A Secnen o

L) N‘?U»

OBJECTIVES VOCABULARY

"m’" Discuss the fundamental conc ; o
programming. : Primary. memory

Secondary memory -
Software

Software development
life cycle (SDLC)
Thhis is the only chapter in the book that is not about the details System software
of writing Java programs. This chapter discusses computing in gen-
eral, hardware and software, the representation of information in
binary (i.e., as Os and 1s), and general concepts of object-oriented
programming. All this material will give you a broad understanding
of computing and a foundation for your study of programming.

Estimated Time: 2 hours

Ubiquitous computing
Waterfall model

1.1 History of Computers

ENIAC, or Electronic Numerical Integrator and Computer, built in the late 1940s, was one
of the world’s first digital electronic computers. It was a large standalone machine that filled a
room and used more electricity than all the houses on an average city block. ENIAC contained
hundreds of miles of wire and thousands of heat-producing vacuum tubes. The mean time
between failures was less than an hour, yet because of its fantastic speed when compared to hand-
operated electromechanical calculators, it was immensely useful.

In the early 1950s, IBM sold its first business computer. At the time, it was estimated that the
world would never need more than 10 such machines. By comparison, however, its awesome com-
putational power was a mere 1/2000 of the typical 2-gigahertz Pentium personal computer pur-
 chased for about $1000 in 2006. Today, there are hundreds of millions of computers in the world,

1 Getting Started with Java

most of which are PCs. There are also billions of computers embedded in everyday products such
as handheld calculators, microwave ovens, cell phones, cars, refrigerators, and clothing.

The first computers could perform only a single task at a time, and input and output were
handled by such primitive means as punch cards and paper tape.

In the 1960s, time-sharing computers, costing hundreds of thousands and even millions of
dollars, became popular at organizations large enough to afford them. These computers were
powerful enough for 30 people to work on them simultaneously—and each felt as if he or she
were the sole user. Each person sat at a teletype connected by wire to the computer. By making a
connection through the telephone system, teletypes could even be placed at a great distance from
the computer. The teletype was a primitive device by today’s standards. It looked like an electric
typewriter with a large roll of paper attached. Keystrokes entered at the keyboard were transmit-
ted to the computer, which then echoed them back on the roll of paper. In addition, output from
the computer’s programs was printed on this roll.

In the 1970s, people began to see the advantage of connecting computers in networks, and
the wonders of e-mail and file transfers were born.

In the 1980s, PCs appeared in great numbers, and soon after, local area networks of inter-
connected PCs became popular. These networks allowed a local group of PCs to communicate
and share such resources as disk drives and printers with each other and with large centralized
multiuser computers. ¢

The 1990s saw an explosion in computer use. Hundreds of millions of computers appeared on
many desktops and in many homes. Most of them are connected through the Internet (Figure 1-1).

FIGURE 1-1
An interconnected world of computers

Chapte ackground

During the first decade of the 21t century, computing has become ubiguitous (meaning any-
where and everywhere). Tiny computer chips play the role of brains in cell phones, digital cam-

eras, portable music players, and PDAs (portable digital assistants). Many of these devices now i

connect to the Internet via wireless technology, giving users unprecedented mobility.
And the common language of many of these computers is Java.

1.2 Computer Hardware and Software

Compute_rs can be viewed as machines that process information. They consist of two pri-
mary componénts: hardware and software. Hardware consists of the physical devices that you
see on your desktop, and soffware consists of the programs that give the hardware useful func-
tionality. The main business of this book, which is programming, concerns software. But before
diving into programming, let us take a moment to consider some of the major hardware and soft-
ware components of a typical PC.)

Bits and Bytes

It is difficult to discuss computers without referring to bits and bytes. A bit, or binary digit,
is the smallest unit of information processed by a computer and consists of a single 0 or 1. A byte
consists of eight adjacent bits. The capacity of computer memory and storage devices is usually
expressed in bytes. Some commonly used quantities of bytes are shown in Table 1-1.

TABLE 1-1
§ome commonly used quantities of information storage

UNIT OF BYTES | NUMBER OF BYTES | TYPE OF STORAGE

Qe 1 billion bytes RAM, hard disk drives, DVDs ~ *

Terabyte 1000 gigabytes File server disks

nit 1 Getting Started with Java

Computer Hardware
As illustrated in Figure 1-2, a PC consists of six major subsystems.

FIGURE 1-2
A PC's six major subsystems
i Digital Camera |
Printer
i Scanner |
| Auxiliary 1/0
I Devices
Speakers
@ - Hard Disk
Microphone [}
. CD ROM
>
Monitor [
Diskette
CPU
RAM
Keyboard ! rs 5 a
User Connection Auxiliary
Interface Storage
Rest of the world

Listed in order from outside and most visible to inside and most hidden, the six major
subsystems are as follows:
B The user interface, which supports moment-to-moment communication between a user and
the computer ;
Auxiliary input/output (I/O) devices such as printers and scanners
Auxiliary storage devices for long-term storage of data and programs

A network connection for connecting to the Internet and thus the rest of the world

Internal memory, or RAM, for momentary storage of data and programs

The all important CPU, or central processing unit
Now we explore each of these subsystems in greater detail.

User Interface

The user interface consists of several devices familiar to everyone who has used a PC. In this’;,
book, we assume that our readers have already acquired basic computer literacy and have per-
formed common tasks such as using a word processor or surfing the Internet. The keyboard and
mouse are a computer’s most frequently used input devices, and the monitor or screen is the prin-
cipal output device. Also useful, and almost as common, are a microphone for input and speak-
ers for output.

Auxiliary I/O Devices

Computers have not yet produced a paper-free world, so we frequently rely on the output
from printers. Scanners are most commonly used to enter images, but in conjunction with appro-
priate software they can also be used to enter text. Digital cameras can record static images and
video for transfer to a computer. Numerous other I/O devices are available for special applica-
tions, such as joysticks for games.

Auxiliary Storage Devices

The computer’s operating system, the applications we buy, and the documents we write are
all stored on devices collectively referred to as auxiliary storage or secondary memory. The cur-
rent capacity of these devices is incredibly large and continues to increase rapidly. In 2006, as
these words are being written, hard disks typically store tens of billions of bytes of information,
or gigabytes (GB) as they are commonly called. In addition to hard disks, which are permanently
encased within computers, there are several portable storage media. Most computer software is
now purchased on CD-ROMs. CD stands for compact disk and ROM stands for read-only
memory. The term. ROM is becoming somewhat misleading in this context as PCs are increas-
ingly being equipped with CD devices that can read and write. Most CDs have a capacity of
about 700 million bytes (megabytes or MB), enough for a little over an hour of music or a small
PC software package. Currently, CDs are being supplanted by DVDs, which have about 10 times
a CD’s capacity. Flash memory sticks with a capacity of 100MB to 2GB are the most convenient
portable storage devices. They support input and output and are used primarily for transporting
data between computers that are not interconnected and for making backup copies of crucial
computer files.

Network Connection

A network connection is now an essential part of every PC, connecting it to all the resources of
the Internet. For home computer users, a modem has long been the most widely used connection
device. Modem stands for modulator-demodulator and refers to the fact that the device converts
the digital information (Os and 1s) of the computer to an analog form suitable for transmission on
phone lines and vice versa. Of course, as phone technology becomes increasingly digital, the term
modem is fast becoming a misnomer. Other devices for connecting to the Internet include cable
modems, which use a TV cable or a satellite dish rather than a phone connection; Ethernet cards,
which attach directly to local area networks and from there to the Internet; and wireless cards,
which transmit digital information through the air and many other objects.

Internal Memory

Although auxiliary storage devices have great capacity, access to their information is rela-
. tively slow in comparison to the speed of a computer’s central processing unit. For this reason,
computers include high-speed internal memory, also called random access memory (RAM) or
primary memory. The contents of RAM are lost every time the computer is turned off, but when
the computer is running, RAM is loaded from auxiliary storage with needed programs and data.

&1 Getting Started with Java

Because a byte of RAM costs about 100 times as much as a byte of hard disk storage, PCs usu-
ally contain only about 512MB to 1GB of RAM. Consequently, RAM is often unable to simulta-

neously hold all the programs and data a person might be using during a computer session. To
deal with this situation, the computer swaps programs and data backward and forward between
RAM and the hard disk as necessary. Swapping takes time and slows down the apparent speed of
the computer from the user’s perspective. Often the cheapest way to improve a computer’s per-
formance is to install more RAM.

Another smaller piece of internal memory is called ROM—short for read-only memory. This
memory is usually reserved for critical system programs that are used when the computer starts
up and that are retained when the computer is shut down.

Finally, most computers have 64MB or 128MB of specialized video RAM for storing images
for graphics and video applications.

Central Processing Unit

The central processing unit (CPU) does the work of the computer. Given the amazing range
of complex tasks performed by computers, one might imagine that the CPU is intrinsically very
complex, but such is not the case. In fact, the basic functions performed by the CPU consist of the
everyday arithmetic operations of addition, subtraction, multiplication, and division together
with some comparison and J/O operations. The complexity lies in the programs that direct the
CPU’s operations rather than in the CPU itself, and it is the programmer’s job to determine how
to translate a complex task into an enormous series of simple operations, which the computer
then executes at blinding speed. One of the authors of this book uses a computer that operates at
1 billion cycles per second (1 GHz), and during each cycle, the CPU executes all or part of a basic
operation.)

_ Perhaps we have gone too far in downplaying the complexity of the CPU. To be fair, it too is
highly complex—not in terms.of the basic operations it performs, but rather in terms of how it
achieves its incredible speed. This speed is achieved by packing several million transistors onto a
silicon chip roughly the size of a postage stamp. Since 1955, when transistors were first used in
computers, hardware engineers have been doubling the speed of computers about every
18 months, principally by increasing the number of transistors on computer chips. This phenom-
enon is commonly known as Moore’s Law. However, basic laws of physics guarantee that the
process of miniaturization that allows ever greater numbers of transistors to be packed onto a
single chip will soon end. How soon this will be, no one knows.

The transistor, the basic building block of the CPU and RAM, is a simple device that can be
in one of two states—ON, conducting electricity, or OFFE, not conducting electricity. All the
information in a computer—programs and data—is expressed in terms of these ONs and OFFs,
or 1s and 0s, as they are more conveniently called. From this perspective, RAM is merely a large
array of 1s and Os, and the CPU is merely a device for transforming patterns of 1s and Os into
other patterns of 1s and 0s.

To complete our discussion of the CPU, we describe a typical sequence of events that occurs
when a program is executed, or run:

1. The program and data are loaded from disk into separate regions of RAM.
2. The CPU copies the program’s first instruction from RAM into a decoding unit.

3. The CPU decodes the instruction and sends it to the Arithmetic and Logic Unit (ALU) for
execution; for instance, it may add a number at one location in RAM to one at another
location and store the result at a third location.

4.

5.

Chapte’ ackgroun

The CPU determines the location of the next instruction and repeats the process of copy,
decode, and execute until the end of the program is reached.

After the program has finished executing, the data portion of RAM contains the results of
the computation performed by the program.

Needless to say, this description has been greatly simplified. We have, for instance, ignored the use

of separate processors for graphics and all issues related to input and output; however, the description
provides a view of the computational process that will help you understand what follows.

Computer Software

Computer hardware processes complex patterns of electronic states or Os and 1s. Computer

software .transforms these patterns, allowing them to be viewed as text, images, and so forth.
Software is generally divided into two broad categories—system software and application software.

System Software

System software supports the basic operations of a computer and allows human users to

transfer information to and from the computer. This software includes

T.he operating system, especially the file system for transferring information to and from
disk and schedulers. for running multiple programs concurrently

Communications software for connecting to other computers and the Internet
Compilers for translating user programs into executable form

The user ipterface subsystem, which manages the look and feel of the computer, including
the operation of the keyboard, the mouse, and a screen full of overlapping windows

Application Softwafe

Application software allows human users to accomplish specialized tasks. Examples of types

of application software include

Word processors

Spreadsheets

Database systems

Multimedia software for digital music, photography, and video

Other programs we write

E XERCISE 1.2

1. What is the difference between a bit and a byte?

2. Name two input devices and two output devices.

3. What is the purpose of auxiliary storage devices?
4. What is RAM and how is it used?

5. Discuss the differences between hardware and software.

‘Unit 1 Getting Started with Java

1.3 Binary Representation of Information and

s Computer Memory

A we saw in the previous section, computer memory stores patterns of electronic signals,
which the CPU manipulates and transforms into other patterns. These patterns in turn can be
viewed as strings of binary digits or bits. Programs and data are both stored in memory, and
there is no discernible difference between program instructions and data; they are both just
sequences of Os and 1s. To determine what a sequence of bits represents, we must know the con-
text. We now examine how different types of information are represented in binary notation.

Integers

We normally represent numbers in decimal (base 10) notation, whereas the computer uses
binary (base 2) notation. Our addiction to base 10 is a physiological accident (10 fingers rather
than 8, 12, or some other number). The computer’s dependence on base 2 is due to the on/off
nature of electric current.

To understand base 2, we begin by taking a closer look at the more familiar base 10. What do
we really mean when we write a number such as 54032 We are saying that the number consists
of 5 thousands, 4 hundreds, 0 tens, and 3 ones, or expressed differently:

(5 * 103) + (4 * 10%) + (0 * 101) + (3 * 10°)
(

In this expression, each term consists of a power of 10 times a coefficient between 0 and 9.Ina
similar manner, we can write expressions involving powers of 2 and coefficients between 0 and 1.
For instance, let us analyze the meaning of 10011,, where the subscript 2 indicatef that we are
using a base of 2: - o \ |
10011, = (1 * 2%) + (0 * 23) + (0 * 2%) + (1 % 21) + (1 * 29)

g 160+ 0+ 2+ 1=19
(1 * 101) + (9 * 10°)

The inclusion of the base as a subscript at the end of a number helps us avoid possible con-
fusion. Here are four numbers that contain the same digits but have different bases and thus dif-
ferent values:

11011014
1101101,
1101101,
1101101,

Computer scientists use bases 2 (binary), 8 (octal), and 16 (bexadecimal) extensively. Base 16
presents the dilemma of how to represent digits beyond 9. The accepted convention is to use the
letters A through E, corresponding to 10 through 15. For example:

3BC4,q = (3 * 16%) + (11 * 162) + (12 * 16%) +'(4 * 16°)
= (3 * 4096) + (11 * 256) + (12 * 16) + 4
= 15300,,

Cha Backgroun

As you can see from these examples, the next time you are negotiating your salary with an
employer, you might allow the employer to choose the digits as long as she allows you to pick the
base. Table 1-2 shows some base 10 numbers and their equivalents in base 2. An important fact
of the base 2 system is that 2N distinct valués can be represented using N bits. For example, four
bits represent 24 or 16 values 0000, 0001, 0010, ..., 1110, 1111. A more extended discussion of
number systems appears in Appendix E of this book.

TABLE 1-2
Some base 10 numbers and their base 2 equivalents

BASE 10

7 e

43 101011

Floating-Point Numbers

; Numbers with a fractional part, such as 354.98, are called floating-point numbers. They are a
bit trickier to represent in binary than integers. One way is to use the mantissalexponent notation in
which the number is rewritten as a value between 0 and 1, inclusive (0 < x < 1), times a power of 10.
For example: . i

354.98,, = 0.35498,, * 103

where the mantissa is 35498, and the exponent is 3, or the number of places the-decimal has
moved. Similarly, in base 2

10001.001, = 0.10001001, * 2°

With a .mantissa of 10001001 and exponent of 5, = 101,. In this way we can represent any
floating-point number by two separate sequences of bits, with one sequence for the mantissa and the
other for the exponent.

Many computers follow the slightly different IEEE standard in which the mantissa contains
one digit b(l-:f(.)re the decimal or binary point. In binary, the mantissa’s leading 1 is then sup-
pressed. Originally, this was a 7-bit code, but it has been extended in various ways to 8 bits.

t1 Getting Started with Java

Characters and Strings

: To process text, computers must represent characters such as letters, digits, and other sym-

bols on a keyboard. There are many encoding schemes for characters. One popular scheme is
called ASCII (American Standard Code for Information Interchange). In this scheme, each char-
acter is represented as a pattern of 8 bits or a byte.

In binary notation, byte values can range from 0000 0000 to 1111 1111, allowing for 256
possibilities. These are more than enough for the characters

m A.Z
a..zZ
0.9

Flmsit sl etey

And various unprintable characters such as carriage return, line feed, a ringing bell, and
command characters

Table 1-3 shows some characters and their corresponding ASCII bit patterns.

TABLE 1-3
Some characters and their corresponding ASCII bit patterns

z 0101 1010 z 0111 1010 9 0011 1001

Java, however, uses a scheme called Unicode rather than ASCIL In this scheme, each character is
represented by a pattern of 16 bits, ranging from 0000 0000 0000 0000 to 1111 1111 1111 1111,
Unicode allows for 65,536 possibilities and can represent many alphabets simultaneously. Within
Unicode, the patterns 0000 0000 0000 0000 to 0000 0000 1111 1111 duplicate’ the ASCII
encoding scheme. .

Strings are another type of data used in text processing. Strings are sequences of characters,
such as “The cat sat on the mat.” The computer encodes each character in ASCII or Unicode and
strings them together.

Sound

The information contained in sound is analog. Unlike integers and text, which on a computer
have a finite range of discrete values, analog information has a continuous range of infinitely
many values. The analog information in sound can be plotted as a periodic waveform such as the
one shown in Figure 1-3. The amplitude or height of a waveform measures the volume of the
sound. The time that a waveform takes to make one complete cycle is called its period. The fre-
quency or number of cycles per second of a sound’s waveform measures its pitch. Thus, the
higher a wave is, the louder the sound’s volume, and the closer together the cycles are, the higher
the sound’s pitch.

Chapte/ ckground .

FIGURE 1-3
A sound waveform

An!plitude

Perlod

An input device for sound must translate this continuous analog information into discrete,
digital values. A technique known as sampling takes a reading of the amplitude values on a wave-
form at regular intervals, as shown in Figure 1-4a. If the intervals are short enough, the digital
information can be used to reconstruct a waveform that approximates a sound that most human
beings cannot distinguish from the original. Figure 1-4b shows the waveform generated for out-
put from the waveform sampled in Figure 1-4a. The original waveform is shown as a dotted line,
whereas the regenerated waveform is shown as a solid line. As you can see, if the sampling rate is
too low, some of the measured amplitudes (the heights and depths of the peaks and valleys in the
waves) will be inaccurate. The sampling rate must also be high enough to capture the range of
frequencies (the waves and valleys themselves), from the lowest to the highest, that most humans
can hear. Psychologists and audiophiles agree that this range is from 20 to 22,000 Hertz (cycles
per second). Because a sample must capture both the peak and the valley of a cycle, the sampling
rate must be double the frequency. Therefore, a standard rate of 44,000 samples per second has
been established for sound input. Amplitude is usually measured on a scale from 0 to 65,535.

FIGURE 1-4a
Sampling a waveform

Time

Amplitude

FIGURE 1-4b
Regenerating the sound from the samples

ﬂ

Amplitude

Because of the high sampling rate, the memory requirements for storing sound are much
greater than those of text. For example, to digitize an hour of stereo music, the computer must
perform the following steps: g
B For each stereo channel, every 1/44,000 of a second, measure the amplitude of the sound on

a scale of 0 to 65,535.

m Convert this number to binary using 16 bits.
Thus, 1 hour of stereo music requires

1 hour 60 minutes 60 seconds 44,000 samples 16 bits

* * * *
channel hour minute second

= 5,068,800,000 bits

= 633,600,000 bytes

2 channels *
sample

which is the capacity of a standard CD.

The sampling rate of 44,000 times a second is hot arbitrary, but corresponds to the number of
samples required to reproduce accurate sounds with a frequency of up to 22,000 cycles per second.
Sounds above that frequency are of more interest to dogs, bats, and dolphins than to people.

Many popular sound-encoding schemes, such as MP3, use data compression techniques to
reduce the size of a digitized sound file while minimizing the loss of fidelity.

Images

Representing photographic images on a computer poses similar problems to those encoun-
tered with sound. Once again, analog information is involved, but in this case we have an infinite
set of color and intensity values spread across a two-dimensional space. And once again, the
solution involves the sampling of enough of these values so that the digital information can
reproduce an image that is more or less indistinguishable from the original.

Sampling devices for images are flatbed scanners and digital cameras. These devices measure
discrete values at distinct points or pixels in a two-dimensional grid. In theory, the more pixels
that are taken, the more continuous and realistic the resulting image will appear. In practice, how-
ever, the human eye cannot discern objects that are closer together than 0.1 mm, so a sampling

Chap’ Backgroun

rate of 10 pixels per linear millimeter (250 pixels per inch and 62,500 pixels per square inch)
would be plenty accurate. Thus, a 3-by-5-inch image would need

3 * 5 * 62,500 pixels/inch? = 937,500 pixels

For most purposes, however, we can settle for a much lower sampling rate and thus fewer
pixels per square inch.

The values sampled are of course color values, and there are an infinite number of these on
the spectrum. If we want a straight black-and-white image, we need only two possible values, or
one bit of information, per pixel. For grayscale images, 3 bits allow for 8 shades of gray, while 8
bits allow for 256 shades of gray. A true-color scheme called RGB is based on the fact that the
human retina is sensitive to red, green, and blue components. This scheme uses 8 bits for each of
the three color components, for a total of 24 bits or 16,777,216 (the number of possible
sequences of 24 bits) color values per pixel. No matter which color scheme is used, the sampling
device selects a discrete value that is closest to the color and intensity of the image at a given
point in space.

The file size of a true-color digitized image can be quite large. For example, the 3-by-5-inch
image discussed earlier would need 937,500 pixels * 24 bits/pixel or about 2.5MB of storage. As
with sound files, image files can be saved in a compressed format, such as GIF or JPEG, without
much loss of realism.

Video

Video consists of a soundtrack and a set of images called frames. The sound for a soundtrack
is recorded, digitized, and processed in the manner discussed earlier. The frames are snapshots or
images recorded in sequence during a given time interval. If the time intervals between frames are
short enough, the human eye will perceive motion in the images when they are replayed. The rate
of display required for realistic motion is between 16 and 24 frames per second.

The primary challenge in digitizing video is achieving a suitable data compression scheme. Let’s
assume that you want to display each frame on a 15-inch laptop monitor. Each frame will then cover
about 120 square inches, so even with a conservative memory allocation of 10 kilobytes (KB) of
storage per square inch of image, we’re looking at 1.2MB/frame * 16 frames/second = 19MB/second
of storage. A 2-hour feature film would need 432,000 seconds * 19MB/second = 8,208,000MB
without the soundtrack! A typical DVD has space for several gigabytes of data, so our uncom-
pressed video would obviously not fit on a DVD. Needless to say, very sophisticated data compres-
sion schemes, such as MPEG, have been developed that allow 3-hour films to be placed on a DVD
and shorter, smaller-framed video clips to be downloaded and played from the Internet.

Program Instructions

Program instructions are represented as a sequence of bits in RAM. For instance, on some
hypothetical computer, the instruction to add two numbers already located in RAM and store
their sum at some third location in RAM might be represented as follows:

0000 1001 / 0100 0000 / 0100 0010 / 0100 0100

td Getting Started with Java

. where

The first group of 8 bits represents the ADD command and is called the operation code, or
opcode for short

® The second group of 8 bits represents the location (64,) in memory of the first operand

m The third group of 8 bits represents the location (66,) in memory of the second operand

m The fourth group of 8 bits represents the location (68,4) at which to store the sum

In other words, add the number at location 64 to the number at location 66 and store the
sum at location 68.

Computer Memory

We can envision a computer’s memory as a gigantic sequence of bytes. A byte’s location in
memory is called its address. Addresses are numbered from 0 to 1 less than the number of bytes
of memory installed on that computer, say, 32M - 1, where M stands for megabyte.

A group of contiguous bytes can represent a number, a string, a picture, a chunk of sound, a
program instruction, or whatever, as determined by context. For example, let us consider the
meaning of the two bytes starting at location 3 in Figure 1-5.

FIGURE 1-5
A 32MB RAM

Address Memory

HWNRO

32Mm: 2
2m:1

Chapte| ickgroun

The several possible meanings include these:

® If it is a string, then the meaning is “Hi”.

m Ifitis a binary encoded integer, then the meaning is 18537,,.

m If it is a program instruction, then it might mean ADD, depending on the type of computer.

E XERCISE 1.3

1. Translate 11100011, to a base 10 number.

2, Translate 45B, ¢ to a base 10 number.

3. What is the difference between Unicode and ASCII?

4. Assume that 4 bits are used to represent the intensitieé of red, green, and blue. How many‘total col-
ors are possible in this scheme?

5. An oldfashioned computer has just 16 bits available to represent an address of a memory location.
How many total memory locations can be addressed in this machine?

s

Cha

Unit 1 Getting Started with Java
1.4 Programming Languages

Question: “If a program is just some very long pattern of electronic states in a computer’s
memory, then what is the best way to write a program?” The history of computing provides sev-
eral answers to this question in the form of generations of programming languages.

Generation 1 (Late 1940s to Early 1950s)—Machine Languages

Early on, when computers were new, they were very expensive, and programs were very
short. Programmers toggled switches on the front of the computer to enter programs and data
directly into RAM in the form of Os and 1s. Later, devices were developed to read the Os and 1s
into memory from punched cards and paper tape: There were several problems with this machine
language-coding technique:
®m Coding was error prone (entering just a single 0 or 1 incorrectly was enough to make a pro-
gram run improperly or not at all).

Coding was tedious and slow.

It was extremely difficult to modify programs.

It was nearly impossible for one person to decipher another’s program.

A program was not portable to a different type of computer because each type had its own
unique machine language.

Needless to say, this technique is no longer used!

Generation 2 (Early 1950s to Present)—Assembly Languages

Instead of the binary notation of machine language, assembly language uses mnemonic sym-
bols to represent instructions and data. For instance, here is a machine language instruction fol-
lowed by its assembly language equivalent:

‘m - Honor confidentiality.
0011 1001 / 1111 0110 / 1111 1000 / 1111 1010

‘The code also lists several more specific professional responsibilities:
stive ‘ B0D a, B, _c

" Strive to achieve the highest quality, effectiveness, and dignity in both the
"' process and products of professional work. - : - E

Acduire and maiht_ain ‘profeésionél "co}npéténce. :

Know and respect eXistlhg Jaws pertaining to profeésional work.

Accept and provide appropriate‘ professional review.

Give comprehensive and thorough evaluations of computer systems and their
impacts, including analysis of possible risks.

meaning
1. Add the number at memory location 246, which we refer to as A
2. To the number at memory location 248, which we refer to as B

3. And store the result at memory location 250, which we refer to as C

: 2 _ Each assembly language instruction corresponds exactly to one machine language instruc-
m Honor contracts, agreements, and assigned responsibilities. tion. The standard procedure for using assembly language consists of several steps:
® Improve public understanding of computing and its consequences.

Access computing and communication resources only when authorized to do so.

1. Write the program in assembly language. |
. 2. Translate the program into a machine language program—this is done by a computer pro-
gram called an assembler.

}oad and run the machine language program—this is done by another program called a
oader.

]

In addition to these principles, the code offers a set of guidelines to provide profes-
sionals with explanations of various issues contained in the principles. The complete
text of the ACM Code of Ethics is available at the ACM'’s Web site, http://www.acm.org.

.1 Getting Started with Java

- When compared to machine language, assembly language is

More programmer friendly
Still unacceptably (by today’s standards) tedious to use, difficult to modify, and so forth

No more portable because each type of computer still has its own unique assembly language

ttle as possible by programmers today, although sometimes it

Assembly language is used as li
every student of computer sci-

is used when memory or processing speed are at a premium. Thus,
ence probably learns at least one assembly language.

Generation 3 (Mid-1950s to Present)—High-Level Languages

Early examples of high-level languages are FORTRAN and COBOL, which are still in wide-
spread use. Later examples are BASIC, C, and Pascal. Recent examples include Smalltalk, C++,
and Java. All these languages are designed to be human friendly—easy to write, easy to read, and
easy to understand—at least when compared to assembly language. For example, all high-level
languages support the use of algebraic notation, such as the expression x + (y * z).

Each instruction in a high-level language corresponds to many instructions in machine lan-
guage. Translation to machine language is done by a program called a compiler. Generally, a pro-
gram written in a high-level language is portable, but it must be recompiled for each different
type of computer on which it is going to run. Java is a notable exception because it is a high-level
language that does not need to be recompiled for each type of computer. We learn more about
this in Chapter 2. The vast majority of software written today is written in high-level languages.

E XERCISE 1.4

1. State two of the difficulties of programming with machine language.
2. State two features of assembly language.
3. What is a loader, and what is it used for?

4. State one difference between a high-level language and assembly language.

1.5 The Software Development Process

High-level programming languages help programmers write high-quality software in much
the same sense as good tools help carpenters build high-quality houses, but there is much more to
programming than writing lines of code, just as there is more to building houses than pounding
nails. The “more” consists of organization and planning and various diagrammatic conventions
for expressing those plans. To this end, computer scientists have developed a view of the software
development process known as the software development life cycle (SDLC). We now present a
particular version of this life cycle called the waterfall model.

Chapter skground

The waterfall model consists of several phases:

1. Cust_omer request—ln this phase, the programmers receive a broad statement of a problem *
that is potentially amenable to a computerized solution. This step is also called the user
requirements phase.

2. A_nalysis—The programmers determine what the program will do. This is sometimes
viewed as a process of clarifying the specifications for the problem.

Design—The programmers determine how the program will do its task.

Implementation—The programmers write the program. This step is also called the
coding phase.

5. Integration—Large programs have many parts. In the integration phase, these parts are
brought together into a smoothly functioning whole, usually not an easy task.

6. Mamtenance——Prggrams usually have a long life; a life span of 5 to 15 years is common
for software. During this time, requirements change and minor or major modifications
must be made.

The interaction between the phases is shown in Figure 1-6. Note that the figure resembles a
waterfall, in which the results of each phase flow down to the next. A mistake detected in one
phast? often requires the developer to back up and redo some of the work in the previous phase.
Modifications made during maintenance also require backing up to earlier phases. .

FIGURE 1-6
The waterfall model of the software development life cycle

Unit 1 Getting Started with Java

Programs rarely work as hoped the first time they are run; hence,.tl_ley should b_e subjected to
_extensive and careful testing. Many people think that testing is an activity that applies only to the
w@:implementation and integration phases; however, the outputs of each phase should be scrutinized
carefully. In fact mistakes found early are much less expensive to correct tlllan .those found late.

Figure 1-7 illustrates some relative costs of repairing mistakes when found in different phases.

FIGURE 1-7 y
Relative costs of repairing mistakes when found in different phases

l Cost of Correcting a Fault

Analysis Design Implementation Integration Maintenance

Software Development Phase

Finally, the cost of developing software is not spread equally over the phases. The percent-
ages shown in Figure 1-8 are typical.

FIGURE 1-8
Percentage of total cost incurred in each phase of the development process

implementation takes the most time and therefore costs the
ct, the most expensive aspect of software development. The
and implementation. :

Most people probably think that
most. However, maintenance is, in fa : :
cost of maintenance can be reduced by careful analysis, design,

Che Background

As you read this book and begin to sharpen your programming skills, you should remember

two points:

1. There is more to software development than hacking out code.

2. If you want to reduce the overall cost of software development, write programs that are
easy to maintain. This requires thorough analysis, careful design, and good coding style.
We have more to say about coding style throughout the book.

E XERCISE 1.5

1. What héppens during the analysis and design phases of the software development process?
2. Which phase of the software development process incurs the highest cost to developers?
3. How does the waterfall model of software development work?

4. In which phase of the software development process is the detection and correction of errors the
least expensive?

For a thorough discussion of the software development process and software engineering in
general, see Stephen R. Schach, Software Engineering with Java (Chicago: Irwin, 1997).

1.6 Basic Concepts of Object-Oriented
Programming

The high-level programming languages mentioned earlier fall into two major groups, and these
two groups utilize two different approaches to programming. The first group, consisting of the older
languages (COBOL, FORTRAN, BASIC, C, and Pascal), uses what is called a procedural approach.
Inadequacies in the procedural approach led to the development of the object-oriented approach and
to several newer languages (Smalltalk, C++, and Java). There is little point in trying to explain the
differences between these approaches in an introductory programming text, but suffice it to say that
everyone considers the object-oriented approach to be the superior of the two. There are also several
other approaches to programming, but that too is a topic for a more advanced text.

Most programs in the real world contain hindreds of thousands of lines of code. Writing such
programs is a highly complex task that can only be accomplished by breaking the code into com-
municating components. This is an application of the well-known principle of “divide and con-
quer” that has been applied successfully to many human endeavors. There are various strategies for
subdividing a program, and these depend on the type of programming language used. We now give
an overview of the process in the context of object-oriented programming (OOP)—that is, pro-
gramming with objects. Along the way, we introduce fundamental OOP concepts, such as class,
inheritance, and polymorphism. Each of these concepts is also discussed in greater detail later in the
book. For best results, reread this section as you encounter each concept for a second time.

We proceed by way of an extended analogy in an attempt to associate something already

fami!iar with something new. Like all analogies, this one is imperfect but ideally useful. Imagine
hat it is your task to plan an expedition in search of the lost treasure of Balbor. How familiar can

td Getting Started with Java

this be, you ask? Well, that depends on your taste in books, movies, and video games. Your over-
all approach might consist of the following steps:

Planning—You determine the different types of team members needed, including leaders,
pathfinders, porters, and trail engineers. You then define the responsibilities of each mem-
ber in terms of

& A list of the resources used—these include the materials and knowledge needed by each
member

® The rules of behavior followed—these define how the team member behaves and
responds in various situations

Finally, you decide how many of each type will be needed.

Execution—You recruit the team members and assemble them at the starting point, send
the team on its way, and sit back and wait for the outcome. (There is no sense in endanger-
ing your own life, too.)

Outcome—If the planning was done well, you will be rich; otherwise, prepare for
disappointment.

How does this analogy relate to OOP? We give the answer in Table 1-4. On the left side of

the table we describe various aspects of the expedition, and on the right side are listed corre-
sponding aspects of OOP. Do not expect to understand all the new terms now. We explore them
with many other examples in the rest of this book.

TABLE 14

Expedition analogy to OOP

THE WORLD OF THE EXPEDITION | THE WORLD OF OOP

ch object’s resource ance’,
ariables) and rules of behavior (methods) are - -
* described in a particular class: An object is said to be
an instance of the class that describes its resources
and behavior. i i

an instance of a-particular type.

While a program is executing, it creates, or
instantiates, objects as needed.

At the beginning of the expedition, team
members must be recruited.

TABLE 1-4 Continued
Expedition analogy to OOP

Chapt(ackground

THE WORLD OF THE EXPEDITION | THE WORLD OF OOP

At the end of the day, the leader tells each
member to set up camp. All members
understand this request, but their responses
depend on their types. Each type responds in
a manner consistent with its specific
responsibilities.

Different types of objects can understand the same
message. This is referred to as polymorphism.
However, an object’s response depends on the class
to which it belongs.

TABLE 1-4 Continued
Expedmon analogy to OOP

i p
pecmes———neither more nor less: Thus, programmmg
errors and oversights, no matter how small, are
usually disastrous. Therefore, programmers need to be
excruciatingly thorough and exact when writing programs.

in rules.

E XERCISE 1.6

1. In what way is programming like planning?

2. An objectoriented program is a set of objects that interact by sending messages to each other. Explain.
3. What is a class, and how does it relate to objects in an object-oriented program?
4. Explain the concept of inheritance with an example.

5. Explain the concept of information hiding with an example.

- beginning to ‘question the:traditional balance of ownership rights and fair use. For--
~.example, is browsing a copyrighted manuscript on a network service an instance of fair -
-.use? Or does it involve a reproduction of the manuscript that violates the rights of the

Ch:

ferent mteresb groups—authors, publishers; users ‘and computer professnonals—are

author or publisher? Is the manuscript a physical piece of intellectual property when
browsed or just a temporary pattern of bits in a computer’s memory? When you listen
to an audio clip on a network are you violating copyright, or only when you download

4. the clip to your hard drive? Users and technical experts tend to favor free access to

any information placed on a network. Publishers and to a lesser extent authors tend to
worry that their work, when placed on-a network, will be resold for profit.

Legislators struggling with the adjustment of copyright law to a digital environment
face many of these questions and concerns. Providers and users of digital information
should also be aware of the issues. For more information about these topics, visit the
Creative Commons Web site at http://creativecommons.org/.

it1 Getting Started with Java

SUMMARY

I this chapter, you learned:

® The modern computer age began in the late 1940s with the development of ENIAC.
Business computing became practical in the 1950s, and time-sharing computers advanced
computing in large organizations in the 1960s and 1970s. The 1980s saw the development
and first widespread sales of personal computers, and the 1990s saw personal computers
connected in networks.

B Modern computers consist of two primary components: hardware and software. Computer
hardware is the physical component of the system. Computer software consists of programs
that enable us to use the hardware.

m All information used by a computer is represented in binary form. This information
includes numbers, text, images, sound, and program instructions.

® Programming languages have been developed in the course of three generations: generation 1 is
machine language, generation 2 is assembly language, and generation 3 is high-level language.

m The software development process consists of several standard phases: customer request,
analysis, design, implementation, integration, and maintenance.

m Object-oriented programming is a style of programming that can lead to better quality soft-
ware. Breaking code into easily handled components simplifies the job of writing a large
program.

VOCABULARY Repiew

d Ysié ftware
« . Ubiquitous computing:
Waterfall model

Hardware - : Software

Chapte ackground .

REVIEW Questions

WRITTEN QUESTIONS

Write a brief answer to each of the following questions.

1. What are the three major hardware components of a computer?

2. Name three input devices.

3. Name two output devices.

4. What is the difference between application software and system software?

5. Namea first-ge.neration programming language, a second-generation programming lan-
guage, and a third-generation programming language.

FILL IN THE BLANK
. Complete the following sentences by writing the correct word or words in the blanks provided.
1. All information used by a computer is represented using notation.
2. The phase of the software life cycle is also called the coding phase.

More than half of the cost of developing software goes to the
ware life cycle.

phase of the soft-

4.
5.

Unit 1 Getting Started with Java

ACM stands for

Copyright law is designed to give fair use to the public and to protect the rights of
and .

PROJECTS

PROJECT 1-1

Take some time to become familiar with the architecture of the computer you will use for this

course. Describe your hardware and software using the following guidelines:

CRITICAL Thinking

What hardware components make up your system?
How much memory does your system have?

What are the specifications of your CPU? (Do you know its speed and what kind of micro-
processor it has?)

What operating system are you using? What version of that operating system is your com-
puter currently running? .

What major software applications are loaded on your system?

You have just written some software that you would like to sell. Your friend suggests that

you copyright your software. Discuss why this might be a good idea.

	CCF05282011_00000.jpg
	CCF05282011_00001.jpg
	CCF05282011_00002.jpg
	CCF05282011_00003.jpg
	CCF05282011_00004.jpg
	CCF05282011_00005.jpg
	CCF05282011_00006.jpg
	CCF05282011_00007.jpg
	CCF05282011_00008.jpg
	CCF05282011_00009.jpg
	CCF05282011_00010.jpg
	CCF05282011_00011.jpg
	CCF05282011_00014.jpg
	CCF05282011_00015.jpg
	CCF05282011_00016.jpg

