Fundamentals of Java

bt

Lesson 3:
Syntax, Errors,
and Debugging

Text by: Lambert and Osborne
Slides by: Cestroni
Modifications by: Mr. Dave Clausen

(1,
N

Updated for Java 5 (version 1.5)

Lesson 3: Syntax,

Errors, and Debugging

i

J Objectives:

Construct and use numeric and string literals.
Name and use variables and constants.
Create arithmetic expressions.

Understand the precedence of different arithmetic
operators.

Concatenate two strings or a number and a string.

Know how and when to use comments in a
program.

Tell the difference between syntax errors, run-
time errors, and logic errors.

Insert output statements to debug a program.

Updated for Java 5 (1.5) 2

i

Lesson 3: Syntax,
Errors, and Debugging

Vocabulary:

= arithmetic = pseudocode
expression = reserved words

= comments = run-time error
= exception = semantics
= literal = Syntax
= lOgic error m Virus
= package

Updated for Java 5 (1.5)

3.1 Language Elements

i

L/

& Language elements:

= Vocabulary:
The words and symbols in the language.

= Syntax:
The rules for combining words into statements.

= Semantics:
Define the rules for interpreting statements.

Updated for Java 5 (1.5)

3.1 Language Elements

@ Table 3-1 displays some Java vocabulary

TYPE OF ELEMENT EXAMPLES
arnthmetic operators + - %
assignment operator =

numeric literals 5713 9

programmer defined variable names I fahrenheit celsius

Updated for Java 5 (1.5) 5

3.1 Language Elements

i

L/

€ Programming Languages vs. Natural Languages:
Size:
* Programming languages have small vocabularies
and simple syntax and semantics.
+ Basic elements are not hard to learn.
Rigidity:
+ In programming languages, the syntax used must
be absolutely correct.

Literalness:

+ Since computers follow instructions in a very literal
manner, a programmer must be exhaustively
thorough. (You get what you ask for, which may
not be what you wanted.)

Updated for Java 5 (1.5) 6

i

3.2 Basic Java
Syntax and Semantics

Data Types:
= Primitive data types (numbers, characters,
booleans)

+ Combined in expressions
» Use operators (addition and multiplication)

= Objects

+ Are sent messages
¢+ Must be instantiated before use

: Strlngs
Are objects
* Are sent messages
+ Do not need to be instantiated
+ Can be combined using the concatenation operator

Updated for Java 5 (1.5)

3.2 Basic Java
Syntax and Semantics

i

Syntax:

= Primitive Data Types
+ Combined in expressions using operators

= Objects

+ Sent messages

+ Must be instantiated before used (except
Strings)

+ Strings can be combined using the
concatenation operator

Updated for Java 5 (1.5)

i

3.2 Basic Java
Syntax and Semantics

Numeric Data Types.

= SiX numeric data types are used in

Java:
int (integer)
double (floating-point humbers or numbers
with decimals)
short (not part of the AP subset)

4

@

long (not
byte (noft

float (not

Part
PaAri
Part

of 1
of 1
of 1

ne A
ne A

ne A

Updated for Java 5 (1.5)

P subset
P subset

P subset

)
)
)

3.2 Basic Java
Syntax and Semantics

#® Table 3-2 shows some Java numeric

data types:
int Ay 0,147 483,648 10 2,147 483647
double | Bbytes -1.79769313486231570E+308 10

11976931 3486231010E+308

Updated for Java 5 (1.5) 10

3.2 Basic Java
Syntax and Semantics

i
\J

Numeric Data Types.

= Programs that manipulate numeric
data types often share a common
format;:
+ Input numeric data
+ Perform calculations
+ QOutput numeric results

Updated for Java 5 (1.5)

11

i

3.2 Basic Java
Syntax and Semantics

L/

Literals:

= Literals are items in a program whose

values do not change.
Table 3-3 lists some examples of numeric literals.

EXAMPLE | DATA TYPE

51 an integer
-31444843 a negative integer

3.14 a floating-point number (double)
5.301E5 a floating-point number equivalent to 5.301 * 105, or 530,100
5.301E-5 a floating-point number equivalent to 5.301 * 10-5, or 0.00005301 (double)

Updated for Java 5 (1.5) 12

3.2 Basic Java
Syntax and Semantics

i

L/

Variables and Their Declarations:

= A variable is an item whose value can change
during the execution of a program.

= Changing the value of a variable is equivalent
to replacing the value that was in the cell with
another value.

= The type of data a variable contains cannot
change.

variable
fahrenheit

_18<5

_230-7

Updated for Java 5 (1.5) 13

3.2 Basic Java
Syntax and Semantics

i

Declarations

s Variables

+ Before using a variable for the first time, the
program must declare it's type.

+ Declare a variable in a variable declaration
statement
int age;
double celsius;
String name;
Scanner reader;

+ The type appears on the left and the variable’s
name on the right
m celsius is a double

Updated for Java 5 (1.5) 14

3.2 Basic Java
Syntax and Semantics

i

» Several variables can be declared in a single
declaration.

+ Initial values can be assigned
simultaneously to variable declarations:

intx, y, z=17;

double p;-q =1.41;-pi-=-3.14,-t;

String name = “Bill Jones”;

Scanner reader = new Scanner (System.in);

(class name object variable ins:a\ntiate variable class name)

Updated for Java 5 (1.5) 15

3.2 Basic Java
Syntax and Semantics

i

= Objects

+ Declare the object variable reader, instantiate or
create a Scanner object, and assign the object to the
variable.

= new <name of class>(zero or more parameters)

s Constants

+ The value of the variable cannot change
m final double SALES_TAX_RATE =7.85;

+ “final” indicates a variable is declared as a constant
+ Names of constants are written in UPPERCASE

+ Changing the value of a constant after it is initialized
will be flagged by the compiler as an error.

Updated for Java 5 (1.5)

16

3.2 Basic Java
Syntax and Semantics

A
\J

Assignment Statements

= An assignment statement has the
following form:
<variable> = <expression>;

s The value of the expression on the right

is assigned to the variable on the left:

fahrenheit = reader.nextDouble();
name = “Bill Smith”;

Updated for Java 5 (1.5) 17

3.2 Basic Java
Syntax and Semantics

i

Arithmetic Expressions

An arithmetic expression consists of
operands and operators combined in a
manner familiar from Algebra. The usual
rules apply:

+ Multiplication and division are evaluated
before addition and subtraction.

+ Operators of equal precedence are evaluated
from left to right.

+ Parentheses can be used to change the order
of evaluation.

Updated for Java 5 (1.5) 18

3.2 Basic Java
Syntax and Semantics

i
\J

= Multiplication must be indicated explicitly
(a * b cannot be written as ab or (a) (b))

= Binary operators are placed between their
operands (a * b)

= Unary operators are placed before their
operands (-a)

TYPE EXAMPLE

Literals C i | |
Variables fahrenheit celsius
Parenthesized expressions (fahrenheit - 32.0)

Updated for Java 5 (1.5) 19

3.2 Basic Java

Syntax and Semantics

f;"
\J

Common operators and their precedence:

OPERATOR SYMBOL PRECEDENCE (FROM ASSOCIATION
HIGHEST TO LOWEST)

Grouping () i | Not applicable
Method selector 2 Left to right
Unary plus + 3 Not applicable
Unary minus - 3 Not applicable
Instantiation new 3 Right to left
Cast (double) 3 Right to left
(int)
Multiplication * 4 Left to right

Updated for Java 5 (1.5)

20

3.2 Basic Java
Syntax and Semantics

o

L/

OPERATOR

PRECEDENCE (FROM | ASSOCIATION
HIGHEST TO LOWEST)

Division / 4 Left to right
Remainder or modulus | % 4 Left to right
Addition - 5 Left to right
Subtraction 5 Left to right
Assignment = 10 Right to left

Updated for Java 5 (1.5)

21

3.2 Basic Java
Syntax and Semantics

i

& Division:
Several points concerning operators need

explanation. First, the semantics of division are
different for integer and floating-point operands.

Thus:
m 5.0/2.0 vyields 2.5
m 5/2 yields 2 (a quotient in which the fractional
portion of the answer is simply dropped)
€ Modulus:

The operator % vyields the remainder obtained
when one number is divided by another. Thus:
= 9%5 yields4
= 9.3 % 5.1 yields 4.2

Updated for Java 5 (1.5) 22

3.2 Basic Java
Syntax and Semantics

i

#Precedence:

When evaluating an expression, Java applies
operators of higher precedence before those of
lower precedence unless overridden by
parentheses.

m 3+5*3 yields 18

x -3+5%3 yields 12

m +3+5*%3 yields 18 (use of unary + is uncommon)

= 3+5%-3 vyields -12

m 3+5*%+3 vyields 18 (use of unary + is uncommon)

= (3+5)*3 vyields 24

m3+5% 3 yields 5

x (3+5) % 3 yields 2

Updated for Java 5 (1.5) 23

3.2 Basic Java
Syntax and Semantics

& Association:

The column labeled “Association” in Table 3-5 indicates
the order in which to perform operations of equal
precedence. Thus:

m 18-3-4 yields 11
s 18/3*4 yields 24
= 18 % 3*4 yields 0
s a=b=7; assigns 7tob and b to a

€ More Examples

More examples of expressions and their values are shown
in Table 3-6. In this table, we see the application of two
fairly obvious rules governing the use of parentheses

m Parentheses must occur in matching pairs

= Parenthetical expressions may be nested but must not
overlap.

Updated for Java 5 (1.5) 24

3.2 Basic Java
Syntax and Semantics

{
L/

_EXPRESSION | SAME AS | VALUE

3+4-5 7-5 .
3+ (4 - 5) 3+ (1) 2
3+4*5 3+ 20 23
(3+4)*5 T+ 5 35
8/2+6 4 + 6 10
8 /(2 + 6) 8 /8 a
10-3-4-1 7-4-1 2
10-(3-4-1) 10 = 2} 12
(15 + 9) / (3 + 1) 24 / 4 6
1D+ 8 3 +1 15+ 3+ 14 19
(15 + 9) / (3 + 1) * 2) 24 /(4 * 2)

24 / 8 =
(15 +9) /(3 + 1) * 2 24 /4 * 2

B8 % 2 12

Updated for Java 5 (1.5) 25

i

3.2 Basic Java
Syntax and Semantics

#The largest & smallest integers:
= Integer.MAX_VALUE
+2,147,483,647
= Integer.MIN_VALUE

+-2,147,483,648

#Arithmetic overflow error:
Assigning a value to a variable that is
outside of the ranges of values that the
data type can represent.

Updated for Java 5 (1.5) 26

3.2 Basic Java
Syntax and Semantics

i

Mixed-Mode Arithmetic

= Intermixing integers and floating-point
numbers is called mixed-mode
arithmetic.

= When binary operations occur on
operands of different numeric types, the
less inclusive type (int) is temporarily
and automatically converted to the
more inclusive type (double) before
the operation is performed.

Updated for Java 5 (1.5) 27

3.2 Basic Java

Syntax and Semantics

i
\J

4

4

= Mixed-mode assignments are also allowed, provided the
variable on the left is of a more inclusive type than the
expression on the right. Otherwise, a syntax error occurs.

double d;
int i;
| = 45; --OK, because we assign an int to an int

d = i; --OK, because d is more inclusive than i. The value
45.0 is stored in d.

| = d; --Syntax error because i is less inclusive than d.

= Difficulties associated with mixed-mode arithmetic can be
circumvented using a technique called “casting”. This
allows one data type to be explicitly converted to another

type.

Updated for Java 5 (1.5) 28

3.2 Basic Java
Syntax and Semantics

i
\J

@& Type casting: Temporarily converting one
data type to another

= Can type cast a single variable or an entire
expression

= Place the desired data type within parentheses
before the variable or expression that will be
cast to another data type.

= When casting an expression place parentheses
around both the data type and the expression.

eint ixi= (1nt)(d + L.o}:

Updated for Java 5 (1.5) 29

3.2 Basic Java

Syntax and Semantics

i

L 2

String Expressions and Methods
= Simple Concatenation

The concatenation operator uses the plus symbol (+)

String firstName, //declare four string
lastName, //variables
fullName,
lastThenFirst;

firstName = "Bill”; //initialize firstName

lastName = “Smith”; //initialize lastName

fullName = firstName +”" + lastName; //yields "Bill Smith”
lastThenFirst = lastName +”, “+ firstName; //yields “Smith, Bill”

Updated for Java 5 (1.5) 30

3.2 Basic Java
Syntax and Semantics

i
\J

s Concatenating Strings and Numbers

+ Strings also can be concatenated to numbers.
(The number is automatically converted to a
string before the concatenation operator is
applied.)

String message;
intx=-20,-y-=-35:

message = “Bill sold “ + x + ™ and Sylvia sold ”
+ y + " subscriptions.”;
// yields "Bill sold 20 and Sylvia sold 35 subscriptions.”

Updated for Java 5 (1.5) 31

3.2 Basic Java
Syntax and Semantics

i
\J

s Precedence of Concatenation

* The concatenation operator has the same
precedence as addition, which can lead to
unexpected results:

“number " + 3 + 4 ->“number 3"+ 4 -> “number 34"
“number "+ (3 +4) ->“number” + 7 -> “number 7”

“number " + 3 * 4 -> “number “ + 12 -> “number 12”
3+ 4+ " number” -> 7 + Y number” -> %7 number”

Updated for Java 5 (1.5) 32

3.2 Basic Java
Syntax and Semantics

i

® Escape Character

= String literals are delimited by quotation marks
(*..."), which presents a dilemma when quotation
marks are supposed to appear inside a string.

s Placing a special character before the quotation
mark, indicating the quotation mark is to be taken
literally and not as a delimiter, solves the problem.

s [his special character, also called the escape
character, is a backslash (\).

Message = “As the train left the station, ” +
“the conductor yelled, \"All aboard.\"";

Updated for Java 5 (1.5) 33

3.2 Basic Java
Syntax and Semantics

i

L/

® Escape Character

= The escape character also is used when including
other special characters in string literals.

s Special sequences involving the backslash
character are called escape sequences
+ Backslash t (\t) indicates a tab character
+ Backslash n (\n) indicates a newline character

= When a string must contain a backslash, use two
backlashes in sequence to escape the escape
character.

s Path = “c:\\Java\\Ch3.doc";
yields the string C:\Java\Ch3.doc

Updated for Java 5 (1.5) 34

3.2 Basic Java

Syntax and Semantics

i

&

ne length Method

Strings are objects and implement several
methods.

A string returns its length in response to a
length message:

String theString;
int theLength;

theString = "The cat sat on the mat.”;
theLength = theString.length(); // yields 23

Updated for Java 5 (1.5)

35

3.2 Basic Java
Syntax and Semantics

i
\J

Methods, Messages, and Signatures

= Classes implement methods, and objects are
iInstances of classes.

= An object responds to a message only if its class
implements a corresponding method.

= [0 correspond the method must have the same
name as the message.

*+ Messages are sometimes accompanied by parameters
and sometimes not:
double x = reader.nextDouble(); // No parameter expected
System.out.printin(50.5); // One parameter expected

Updated for Java 5 (1.5) 36

3.2 Basic Java
Syntax and Semantics

i

The parameters included when a message is sent
must match exactly in number and type the
parameters expected by the method.

double d = 24.6;

Math.sqgrt (d); // Perfect! A parameter of type double is expected
Math.sqrt (2.0 * d); // Perfect! The expression yields a double.
Math.sqrt (4); // Fine! Integers can stand in for doubles.
Math.sqrt (); // Error! A parameter is needed.

Math.sqrt (6.7, 3.4); // Error! One parameter only please.
Math.sqrt (“far”); // Error! A string parameter is NOT acceptable.

Updated for Java 5 (1.5) 37

3.2 Basic Java
Syntax and Semantics

i
\J

x Some methods return a value and others
do not.

= 10 use a method successfully we must
Know:
+ What type of value it returns
¢ [Its name
+ The number and type of the parameters it

expects

= This information is called the method’s

signature.

Updated for Java 5 (1.5) 38

i

3.2 Basic Java
Syntax and Semantics

j@User-Deﬁned Symbols

= Must begin with a letter of the alphabet
oA .. Z
*a..Z

+ and $ (I recommend that you don’t begin a
user defined symbol with these.)

= Can include other letters and / or digits.

= Cannot include a space.
» Use the underscore character instead of a space.
+i.e. symbol_Name

Updated for Java 5 (1.5) 39

3.2 Basic Java
Syntax and Semantics

s Keywords

* Keywords or reserved words
cannot be employed as user-
defined symbols because they
have special meaning in Java.

+ Keywords are also case sensitive.
“import” is a reserved word but
“Import” and "IMPORT" are not.

Updated for Java 5 (1.5) 40

3.2 Basic Java

Syntax and Semantics

o

Table 3-7 displays a list of Java’s reserved words

abstract double int static
boolean else interface super
break extends long switch
byte final native synchronized
case finally new this
catch float null throw
char for package throws
class goto private transient
const if protected try
continue implements public void
default import return volatile
do instanceof short while

Updated for Java 5 (1.5)

41

i

3.2 Basic Java

Syntax and Semantics

Programming Protocols:

4

Well-chosen variables names greatly increase a
program’s readability and maintainability

It is considered good programming practice to
use meaningful names such as:

radius rather than r

taxableIncome rather than ti

Examples of valid and invalid variable names:

Valid Names: surfaceArea3 $ $%%
Invalid Names: 3rdPayment pay.rate abstract

Updated for Java 5 (1.5) 42

3.2 Basic Java
Syntax and Semantics

i

L/

Programming Protocols:

+ When forming a compound variable name,
programmers usually capitalize the first letter
of each word except the first.

(For example: taxableIncome)

+ All the words in a program’s name typically
begin with a capital letter
(ComputeEmployeePayroll).

+ Constant names usually are all uppercase
(CONSTANT_NAME).

Updated for Java 5 (1.5) 43

i

3.2 Basic Java
Syntax and Semantics

L/

Packages and the import statement

= Java often utilizes code written by many other
programmers.

= A package makes it easy for programmers to
share code.

= A programmer can collect the classes together
In a package, and then import classes from the
package.

= [he Java programming environment typically
includes a large number of standard packages.

= When using a package, a programmer imports
the desired class or classes.

Updated for Java 5 (1.5) 44

3.2 Basic Java
Syntax and Semantics

i

= The general form of an import statement is:
import X.y.z;
where
X is the overall name of the package.
y is the name of a subsection within the package.
z is the particular class in the subsection.

= [tis possible to import all the classes within a
subsection at once.

s The statement to import all the classes within a
subsection looks like this:
import x.y.*;
= A star (*) is used to make available all of the
classes in a package.

Updated for Java 5 (1.5) 45

3.3 Terminal I/0 for
Different Data types

i

s Objects support terminal input and output.

= An instance of the class Scanner supports
input.

= [he object System.out supports output.

= Object System.out is an instance of the
class PrintStream.

* The class PrintStream, is available to Java
programmers without specifying a nhame in an
import statement.

+ However, the Scanner class requires importing
the package: import java.util.Scanner;

Updated for Java 5 (1.5) 46

3.3 Terminal I/0 for
Different Data types

i

Table 3-8 summarizes the methods in class Scanner.

METHOD DESCRIPTION

double nextDouble()

Returns the first double in the input line. Leading and trailing spaces
are ignored.

int nextInt()

Returns the first integer in the input line. Leading and trailing spaces
are ignored.

String nextLine()

Returns the input line, including leading and trailing spaces. Warning:
A leading newline is returned as an empty string.

Updated for Java 5 (1.5) 47

3.3 Terminal I/0 for
Different Data types

The foIIowmg program |IIustrates the ma]or features of termlnal

import java.util. Scanner;

public class TestTerminallO {
public static void main (String [] args) {
Scanner reader = new Scanner(System.in);
String name;
int age;
double weight;

System.out.print ("Enter your name (a string): ");
name = reader.nextLine();

System.out.print ("Enter your age (an integer): ");
age = reader.nextInt();

Updated for Java 5 (1.5)

48

3.3 Terminal I/0 for
Different Data types

System.out.print ("Enter you weight (a double): ");
weight = reader.nextDouble();

System.out.printin ("Greetings " + name +
" Youare" + age +

" years old and you weigh " + weight + "

pounds.");

}
}

Updated for Java 5 (1.5)

49

String Errors using nextLine()

i

" @®Look at the following program:
n [estTerminallIOWithError.java
a [estTerminallOWithError.txt

@ If you attempt to read a string from the input
stream after an integer or double has been
entered the string will be empty.

= The methods nextInt() and nextDouble() ignore
and do NOT consume the newline character that
the user entered following the number.

= The newline character was waiting in the input
stream to be consumed by the nextLine() method,
which was expecting more data.

Updated for Java 5 (1.5) 50

Correcting nextLine() Errors

i

#&To correct this error, add another
reader.nextLine(); statement to
consume the newline character before
reading the string from the input
stream.

#Here is the corrected code:

m [estTerminallOWithErrorFixed.java
s TestTerminallOWithErrorFixed.txt

Updated for Java 5 (1.5) 51

3.4 Comments

i

Comments are explanatory sentences
inserted in a program in such a matter
that the compiler ignores them.

There are two styles for indicating
comments:
+ End of line comments:

These include all of the text following a
double slash (//) on any given line; in other
words, this style is best for just one line of
comments

¢« Multiline comments:

These include all of the text between an

opening /* and a closing */
Updated for Java 5 (1.5) 52

3.4 Comments

i

The following code segment illustrates
the use of both kinds of comments.

/* This code segment illustrates the
use of assignment statements and comments */

a=i3" // assign 3 to variable a
b =4; // assign 4 to variable b
c =a+ b; //add the number in variable a
// to the number in variable b
// and assign the result, 7 , to variable ¢

Updated for Java 5 (1.5) 53

i

3.4 Comments

The main purpose of comments is to make a
program more readable and thus easier to
maintain.

One should:

+ Begin a program with a statement of its purpose and
other information that would help orient a
programmer called on to modify the program at
some future date.

+ Accompany a variable declaration with a comment
that explains the variable’s purpose.

* Precede major segments of code with brief
comments that explain their purpose.

+ Include comments to explain the workings of

complex or tricky sections of code.

Updated for Java 5 (1.5) 54

i

3.4 Comments

Too many comments are as harmful as too
few, because over time, the burden of
maintaining the comments becomes excessive.
+ Dont use comments that state the obvious.

The best written programs are self-
documenting; that is, the reader can
understand the code from the symbols used

and from the structure and overall organization
of the program.

Updated for Java 5 (1.5) 55

i

Case Study 1

Income Tax Calculator.java

Income Tax Calculator.txt

Updated for Java 5 (1.5)

56

3.5 Programming Errors

i

L/

The Three Types of Errors

n Syntax errors

+ Occur when a syntax rule is violated
(no matter how minor)

+ Are detected at compile time.

+ When the Java compiler finds a
syntax error, it prints an error
message.

* Error messages are often quite
cryptic.

Updated for Java 5 (1.5)

57

3.5 Programming Errors

i

Run-time errors

2

Occur when the computer is asked to do something
that it considers illegal, (such as dividing by zero)

x/y is syntactically correct

When the expression is evaluated during execution
of the program, the meaning of the expression
depends on the values contained in the variables.

m (If the variable y has the value 0, then the expression
cannot be evaluated)

The Java run-time environment will print a message
telling us the nature of the error and where it was
encountered.

The error message might be hard to understand.

Updated for Java 5 (1.5) 58

i

3.5 Programming Errors

Logic errors (design errors or
bugs)
+ Occur when we fail to express

ourselves accurately.

= The instruction is phrased properly, and
thus the syntax is correct.

= The instruction is meaningful, and thus
the semantics are valid.

s But the instruction does not do what we
intended, and thus is logically incorrect.

+ Programming environments do not
detect logic errors automatically.

Updated for Java 5 (1.5) 59

i

Errors

L/

#DivideBylntegerZero.java
» DivideBylIntegerZero.txt

#DivideByFloatingPointZero.java

= DivideByFloatingPointZero.txt

#PuzzlingRunTimeError.java
s PuzzlingRunTimeError.txt

Updated for Java 5 (1.5)

60

3.6 Debugging

i

A bug is not always easy to locate.

Often bugs are not located where one might
expect them.

Adding extra lines to the program can help to
locate a bug.

Determining if any of the variables deviate from
their expected values will highlight the existence
of a bug.

A variables value is printed in the terminal
window as follows:
System.out.println (*<some message>" +
<variable name>);

Updated for Java 5 (1.5) 61

i

3.6 Debugging

The following program claims that 212
degrees Fahrenheit converts to 41.1

degrees Celsius instead of the expected
100.

Try checking the value of fahrenheit just
before celsius is calculated. The
needed code looks like this:

System.out.printin (“fahrenheit = ” + fahrenheit); // This is
the debugging code

celsius = (fahrenheit - 32.0) * 5.0 / 9.0;

Updated for Java 5 (1.5) 62

i

3.6 Debugging

When the program runs again with the
debugging code included, we get the following
output:

Enter degrees Fahrenheit: 212
Fahrenheit = 106.0
The equivalent in celsiusis 41.111111111111114

212 is entered but for some reason, the
program says the value of fahrenheit is 106.

Updated for Java 5 (1.5) 63

3.6 Debugging

i

Examine the surrounding code to try to spot
the error.

System.out.print ("Enter degrees Fahrenheit: ”);
fahrenheit = reader.nextDouble() / 2.0;
System.out.printin (“fahrenheit = ” + fahrenheit);
celsius = (fahrenheit — 32.0) * 5.0 / 9.0;

The error is that the value entered by the user
IS divided by 2 just before it is assighed to the
variable fahrenheit.

Updated for Java 5 (1.5) 64

Case Study 2

CountAngels.java

CountAngels.txt

Updated for Java 5 (1.5)

65

i

Summary

Use the int data type for whole numbers
and double for floating-point numbers.

& Variable and method names consist of a letter

followed by additional letters or digits.
€ Keywords cannot be used as names.

Final variables behave as constants; their
values cannot change after they are declared.

Updated for Java 5 (1.5) 66

i

Summary (cont.) 1

®Arithmetic expressions are evaluated
according to precedence.

$Some expressions yield different results

for integer and floating-point operands.
#5trings may be concatenated.
#®The compiler catches syntax errors.
#The JVM catches run-time errors.

Updated for Java 5 (1.5) 67

Summary (cont.) 2

\L/

®Logic errors, if caught, are detected by
the programmer or user at run-time.

#®Can find and remove logic errors by
inserting debugging output statements
to view the values of variables.

Updated for Java 5 (1.5) 68

	APCS_Java_Lesson_3_Java1_5_Page_01
	APCS_Java_Lesson_3_Java1_5_Page_02
	APCS_Java_Lesson_3_Java1_5_Page_03
	APCS_Java_Lesson_3_Java1_5_Page_04
	APCS_Java_Lesson_3_Java1_5_Page_05
	APCS_Java_Lesson_3_Java1_5_Page_06
	APCS_Java_Lesson_3_Java1_5_Page_07
	APCS_Java_Lesson_3_Java1_5_Page_08
	APCS_Java_Lesson_3_Java1_5_Page_09
	APCS_Java_Lesson_3_Java1_5_Page_10
	APCS_Java_Lesson_3_Java1_5_Page_11
	APCS_Java_Lesson_3_Java1_5_Page_12
	APCS_Java_Lesson_3_Java1_5_Page_13
	APCS_Java_Lesson_3_Java1_5_Page_14
	APCS_Java_Lesson_3_Java1_5_Page_15
	APCS_Java_Lesson_3_Java1_5_Page_16
	APCS_Java_Lesson_3_Java1_5_Page_17
	APCS_Java_Lesson_3_Java1_5_Page_18
	APCS_Java_Lesson_3_Java1_5_Page_19
	APCS_Java_Lesson_3_Java1_5_Page_20
	APCS_Java_Lesson_3_Java1_5_Page_21
	APCS_Java_Lesson_3_Java1_5_Page_22
	APCS_Java_Lesson_3_Java1_5_Page_23
	APCS_Java_Lesson_3_Java1_5_Page_24
	APCS_Java_Lesson_3_Java1_5_Page_25
	APCS_Java_Lesson_3_Java1_5_Page_26
	APCS_Java_Lesson_3_Java1_5_Page_27
	APCS_Java_Lesson_3_Java1_5_Page_28
	APCS_Java_Lesson_3_Java1_5_Page_29
	APCS_Java_Lesson_3_Java1_5_Page_30
	APCS_Java_Lesson_3_Java1_5_Page_31
	APCS_Java_Lesson_3_Java1_5_Page_32
	APCS_Java_Lesson_3_Java1_5_Page_33
	APCS_Java_Lesson_3_Java1_5_Page_34
	APCS_Java_Lesson_3_Java1_5_Page_35
	APCS_Java_Lesson_3_Java1_5_Page_36
	APCS_Java_Lesson_3_Java1_5_Page_37
	APCS_Java_Lesson_3_Java1_5_Page_38
	APCS_Java_Lesson_3_Java1_5_Page_39
	APCS_Java_Lesson_3_Java1_5_Page_40
	APCS_Java_Lesson_3_Java1_5_Page_41
	APCS_Java_Lesson_3_Java1_5_Page_42
	APCS_Java_Lesson_3_Java1_5_Page_43
	APCS_Java_Lesson_3_Java1_5_Page_44
	APCS_Java_Lesson_3_Java1_5_Page_45
	APCS_Java_Lesson_3_Java1_5_Page_46
	APCS_Java_Lesson_3_Java1_5_Page_47
	APCS_Java_Lesson_3_Java1_5_Page_48
	APCS_Java_Lesson_3_Java1_5_Page_49
	APCS_Java_Lesson_3_Java1_5_Page_50
	APCS_Java_Lesson_3_Java1_5_Page_51
	APCS_Java_Lesson_3_Java1_5_Page_52
	APCS_Java_Lesson_3_Java1_5_Page_53
	APCS_Java_Lesson_3_Java1_5_Page_54
	APCS_Java_Lesson_3_Java1_5_Page_55
	APCS_Java_Lesson_3_Java1_5_Page_56
	APCS_Java_Lesson_3_Java1_5_Page_57
	APCS_Java_Lesson_3_Java1_5_Page_58
	APCS_Java_Lesson_3_Java1_5_Page_59
	APCS_Java_Lesson_3_Java1_5_Page_60
	APCS_Java_Lesson_3_Java1_5_Page_61
	APCS_Java_Lesson_3_Java1_5_Page_62
	APCS_Java_Lesson_3_Java1_5_Page_63
	APCS_Java_Lesson_3_Java1_5_Page_64
	APCS_Java_Lesson_3_Java1_5_Page_65
	APCS_Java_Lesson_3_Java1_5_Page_66
	APCS_Java_Lesson_3_Java1_5_Page_67
	APCS_Java_Lesson_3_Java1_5_Page_68

