Lesson 5:

Introduction to
Defining Classes

Updated for Java 1.5
(Additions and Modifications by
Mr. Dave Clausen)

Lesson 5: Introduction
to Defining Classes

i

j Objectives:

= Design and implement a simple class from
user requirements.

= Organize a program in terms of a view class
and a model class.

= Use visibility modifiers to make methods
visible to clients and restrict access to data
within a class.

Lesson 5: Introduction
to Defining Classes

i

j Objectives:

= Write appropriate mutator methods, accessor
methods, and constructors for a class.

= Understand how parameters transmit data to
methods.

= Use instance variables, local variables, and
parameters appropriately.

= Organize a complex task in terms of helper
methods.

i

Lesson 5: Introduction
to Defining Classes

Vocabulary:
m aCCcessor
= actual parameter
= behavior
m constructor
= encapsulation

= formal
parameter

= helper method

= identity

= instantiation

m lifetime

s mutator

= SCope

n State

m Visibility modifier

4

i

5.1 The Internal Structure
of Classes and Objects

= An objectis a run-time entity that contains
data and responds to messages.

s A cl/assis a software package or template

that describes the characteristics of similar
objects.

s | hese characteristics are of two sorts:

+ Variable declarations that define an object’s data
requirements (instance variables).

+ Methods that define its behavior in response to
messages.

5.1 The Internal Structure
of Classes and Objects

i

= The combining of data and behavior into a
single software package is called
encapsulation.

= An object is an instance of its class, and the
process of creating a new object is called
instantiation.

5.1 The Internal Structure
of Classes and Objects

i

Classes, Objec

+ Variables

s, and Computer Memory

= When a Java program is executing, the
computers memory must hold:

+ All class templates in their compiled form

that refer to objects

+ (Objects as needed

= Each method’s compiled byte code is
stored in memory as part of its class’s

template.

5.1 The Internal Structure

of Classes and Objects

i

Memory for data is allocated within
objects.

All class templates are in memory at all
times, individual objects come and go.

An object first appears and occupies
memory when it is instantiated, and it
disappears automatically when no longer
needed.

5.1 The Internal Structure
of Classes and Objects

i

= The JVM knows if an object is in use by
keeping track of whether or not there are
any variables referencing it.

s Because unreferenced objects cannot be
used, Java assumes that it is okay to

delete them from memory via garbage
collection.

5.1 The Internal Structure
of Classes and Objects

i

Three Characteristics of an Object

= 1. An object has behavior as defined by the
methods of its class

= 2. An object has state, which is another way of
saying that at any particular moment its
instance variables have particular values.

+ Typically, the state changes over time in
response to messages sent to the object.

10

5.1 The Internal Structure
of Classes and Objects

i

3. An object has its own unique identity, which
distinguishes it from all other objects in the
computers memory.

» An objects identity is handled behind the scenes
by the JVM and should not be confused with the
variables that might refer to the object.

+ When there are no variables the garbage
collector purges the object from memory.

11

5.1 The Internal Structure
of Classes and Objects

i

Clients, Servers, and Interfaces

= When messages are sent, two objects
are involved:
+ The sender (the client)
+ The receiver (the server)

s Client:

+ A client’s interactions with a server are
limited to sending it messages.

» A client needs to know only a server’s
interface, that is, the list of methods
supported by the server.

12

i

5.1 The Internal Structure
of Classes and Objects

Server

+ The server’s data requirements and the
implementation of its methods are hidden
from the client (information hiding).

+ Only the person who writes a class needs to
understand its internal workings

» A class’s implementation details can be
changed radically without affecting any of
its clients provided its interface remains the
same.

13

5.2 A Student Class

o
\J

The student object stores a name and three test scores and
responds to the message shown in Table 5-1.

METHODS DESCRIPTIONS

void setName(aString)

Example: stu.setName ("Bill");
Sets the name of stu to Bill.

String getName()

Example: str = stu.getName();
Returns the name of stu.

void setScore
(whichTest, testScore)

Example: stu.setScore (3, 95);
Sets the score on test 3 to 95. If whichTest is not 1, 2, or 3,
then 3 is substituted automatically.

int getScore(whichTest)

Example: score = stu.getScore (3);
Returns the score on test 3. If whichTest is not 1, 2, or 3,
then 3 is substituted automatically.

int getAverage()

Example : average = stu.getAverage();
Returns the average of the test scores.

int getHighScore()

Example: highScore = stu.getHighScore();
Returns the highest test score.

String toString()

Example: str = stu.toString();
Returns a string containing the student’s name and test scores.

5.2 A Student Class

r""\

'Using Student Objects

= Some portions of code illustrate how a client
instantiates and manipulates student objects. First we
declare several variables, including two variables of type
Student.

Student sl1, s2; // Declare the wvariables
String str;
int 1;

= As usual, we do not use variables until we instantiate
them. We assign a new student object to s1 using the
operator new.

sl = new Student(); // Instantiate a student and associate it with

// the wvariable sl
15

5.2 A Student Class

i

@ \We could declare and instantiate a
Student object in one step:

Student sl = new Student();

= It is important to emphasize that the variable
sl is a reference to a student object and is not
a student object itself.

= A student object keeps track of the name and
test scores of an actual student. Thus, for a
brand new student object, what are the values

of these data attributes?
16

5.2 A Student Class

i

= [hat depends on the class’s internal
implementation details, but we can find
out easily by sending messages to the

student object via its associated variable
sl:

str = sl.getName()

System.out.println (str); // yields ""
1 = sl.getHighScore()
System.out.println (1); // vyields O

17

i

5.2 A Student Class

s].
sl.

sl

= Apparently, the name was initialized to an
empty string and the test scores to zero.
Now we set the object’s data attributes by
sending it some messages:

setName ("Bj_ll") r // Set the student's name to "Bill"
setScore (1, 84) ’ // Set the score on test 1 to 84

.setScore (2, 86) ’ // Set the score on test 2 to 86
gl .

setScore (3, 88) ’ // Set the score on test 3 to 88

18

5.2 A Student Class

i

Messages that change an object’s state are
called mutators. (modifiers or transformers in
G-+

To see if the mutators worked correctly, we
use other messages to access the object’s
state (called accessors).

str = sl. getName () ’ // str equals "Bill"

1

1 =

1

= sl.getScore (1); // i equals 84
sl.getHighScore () ; // i equals ss
= sl.getAverage(); // i equals 86

19

o

5.2 A Student Class

= [he object’s string representation is
obtained by sending the toString
message to the object.

str = sl.toString();
// str now equals

// "Name: Bill\nTest 1: 84\nTest2:

//86\nTest3: 88\nAverage: 86"

20

5.2 A Student Class

= When displayed in a terminal window (Figure
5-1), the string is broken into several lines as
determined by the placement of the newline
characters (*\n’).

-MSD0S Prompt M= 3

21

5.2 A Student Class

i

= In addition to the explicit use of the toString
method, there are other situations in which the
method is called automatically. For instance,
toString is called implicitly when a student
object is concatenated with a string or is in an
argument to the method printin:

str = "The best student is: \n" + sl;

// Egquivalent to: str = "The best student is: \n" + sl.toString():;
System.out.println (sl);

// Egquivalent to: System.out.println (sl.toString());

22

i

5.2 A Student Class

Objec

s, Assighments, and Aliasing

= We close this demonstration by associating a
student object with the variable s2. Rather
than instantiating a new student, we assign sl

to s2:

s2 =sl; // s1 and s2 now refer to the same student

23

5.2 A Student Class

i

= [he variables s1 and s2 now refer to the same
student object.

= This might come as a surprise because we might
reasonably expect the assignment statement to
create a second student object equal to the first,
but that is not how Java works.

= To demonstrate that s1 and s2 now refer to the
same object, we change the students name using
s2 and retrieve the same name using s1:

s2.setName ("Ann"); // Set the name
str = sl.getName () ;

// str equals "Ann". Therefore, sl and s2 refer to the same object.

24

i

5.2 A Student Class

= Table 5-2 shows code and a diagram that
clarify the manner in which variables are
affected by assignment statements. At any
time, it is possible to break the connection
between a variable and the object it
references. Simply assign the value null to the

variable:
Student sl;
sl = new Student () ;

// 81 references the newly instantiated student

e o« // Do stuff with the student

S:l — Illl].l.; // sl no longer references anything

25

i

5.2 A Student Class

s [able 5-2 demonstrates that assignment to
variables of numeric types such as int
produces genuine copies, whereas
assignment to variables of object types
does not.

26

5.2 A Student Class

S8 _CODE | DIAGRAM COMMENTS

int i, 5; i and § are memory locations that have
i i not yet been initialized, but which will
hold integers.
arard 2?2?
i= 3; i holds the integer 3.
J = i; i j j holds the integer 3.
3 3
Student s, t; s and t are memory locations that have
s t not yet been initialized, but which will
hold references to student objects.
b drard ?2?2?
s = new Student():; s holds a reference to a student object.
t = s; s t t holds a reference to the same
student object.
\ /
student
object

27

5.2 A Student Class

i

L/

Primitive Types, Reference Types, and the
null Value

= |WO or more variables can refer to the
same object.

= In Java, all types fall into two fundamental

categories

+ Primitive types: int, double, boolean, char,
and the shorter and longer versions of these

+ Reference types: all classes, for instance,
String, Student, Scanner, and so on

28

5.2 A Student Class

i

A variable of a primitive type is best viewed as
a box that contains a value of that primitive

type.
A variable of a reference type is thought of as
a box that contains a pointer to an object.

The state of memory after the following code
is executed is shown in figure 5-2

iInt number = 45;
String word = “Hi"; number 45

word | ——'H'["I'

)9

5.2 A Student Class

i

s Reference variables can be assigned the
value null.

= [If a reference variable previously pointed
to an object, and no other variable
currently points to that object, the
computer reclaims the object’'s memory
during garbage collection.

Student student = new Student (“"Mary”, 70,
80, 90);
student = null;

30

i
\J

5.2 A Student Class

The Student variable before and after it has been assigned the

value null

student | ——M"'a’["r" 'y'

.-a LB r‘l tyf

-

To the garbage collector

31

5.2 A Student Class

s A reference variable can be compared
to the null value, as follows:

1f (student == null)

// Don't try to run a method with that student!
else

// Process the student
while (student != null)
{

// Process the student

// Obtain the next student from
whatever source

}

i

5.2 A Student Class

= When a program attempts to run a method
with an object that is null, Java throws a
null pointer exception, as in the
following example:

String str = null;

System.out.println (str.length());

// OOPS! str is null, so Java throws a
// null pointer exception

33

5.2 A Student Class

i

" The Structure of a Class Template

All classes have a similar structure

consisting of four parts:

+ 1. The class's name and some modifying
phrases

» 2. A description of the instance variables

+ 3. One or more methods that indicate how

to initialize a new object (called
constructor methods)

* 4, One or more methods that specify how

an object responds to messages
34

5.2 A Student Class

= The following is an example of a class template:

public class <name of class> extends <some other class>

{

// Declaration of instance variables
private <type> <name>;

// Code for the constructor methods
public <name of class> ()

{

// Initialize the i1nstance variables

}

// Code for the other methods
public <return type> <name of method> (<parameter

list>){

5.2 A Student Class

i

s Class definitions usually begin with the
keyword public, indicating that the class is
accessible to all potential clients.

+ public class

= Class names are user-defined symbols, and
must adhere to the rules for naming
variables and methods.

s [t is common to start class names with a
capital letter and variable and method
names with a lowercase letter.

¢ <name of class>
36

i

5.2 A Student Class

Java organizes its classes in a hierarchy. At
the base of this hierarchy is a class called
Object.

In the hierarchy, if class A is immediately
above another class B, we say that A is the
superclass or parentof B and B is a
subclass or child of A.

Each class, except Object, has exactly

one parent and can have any number of
children.

extends <some other class>

37

i

5.2 A Student Class

L/

Relationship between superclass and subclass

{superclass)

N

B
(subclass)

| A

38

5.2 A Student Class

i

When a new class is created, it is incorporated
into the hierarchy by extending an existing
class

The new class’s exact placement in the
hierarchy is important because a new class
inherits the characteristics of its superclass
through a process called inheritance.

If the clause extends <some other class> is
omitted from the new class’s definition, then
by default, the new class is assumed to be a
subclass of Objects.

39

i

5.2 A Student Class

Instance variables are nearly always
declared to be private.

This prevents clients from referencing to
the instance variables directly.

Making instance variables private is an
important aspect of information hiding.
private <type> <name>

40

i

5.2 A Student Class

Methods are usually declared to be
oublic, which allows clients to refer to
them.

public <return type> <name of method>

The clauses private and public are
called visibility modifiers.

Omitting the visibility modifier is
equivalent to using public.

41,

5.2 A Student Class

o
\J

Implementation of the Student Class: Student.java

/* Student.java Student.txt
Manage a student's name and three test scores.
s
public class Student ({
//Instance variables
//Bach student object has a name and three test scores

private String name; //Student name

private int testl; //Score on test 1
private int test2; //Score on test 2
private int test3; //Score on test 3

//Constructor method

public Student(){ f feoristructor

//Initialize a new student's name to the empty string and the test
//scores to zero.

mn

name = ;
testl = 0;
test2 = 0;
test3 = 0;

42

ﬁ5.2 A Student Class

//0Other methods

public void setName (String nm){ //modifier
//Set a student's name
name = nm;

public String getName (){ //accessor
FiGet 4 gtudent‘'*s nhame
return name;

}
public void setScore (int 1, 1nt score) { //modifier
//Set test 1 to score

1f (1 = = 1) testl = score;

else 1f (1 = = 2) testZ2 = score;

else test3 = score;

ﬁ5.2 A Student Class

public int getScore (int i){ //accessor
//Retrieve score 1

1t (i == 1) return testl;
else 1if (1 == 2) return test?2;
else return test3;

}

public int getAverage () { //accessor

//Compute and return the average
int average;
average = (int) Math.round((testl + test2 + test3) / 3.0);
return average;

pukbliec int getHighBeorel]) | //accessor
//Determine and return the highest score
int highScore;
highScore = testl;
if (testZ2 > highScore) highScore = test2;
if (test3 > highScore) highScore = test3;

return highScore;

ﬁ5.2 A Student Class

public String toString () {
//Construct and return a string representation of the student

String str;

str = "Name: " 4+ name + "\n" +
// "\n" denotes a newline
"Test 1: " + testl + "\n" +
"Test 2: " + testz2 + "\n" +
"Test 3¢ " <+ test3 + *"\a" +
"Average: " + getAverage();

return str;

i

5.2 A Student Class

In the preceding example all the
methods, except the constructor
method, have a return type, although
the return type may be void, indicating
that the method in fact returns nothing.

In summary when an object receives a
message, the object activates the
corresponding method. The method
then manipulates the object’s data as
represented by the instance variables.

46

i

5.2 A Student Class

Constructors

= The principal purpose of a constructor is
to initialize the instance variables of a
newly instantiated object.

s Constructors are activated when the

keyword new is used and at no other
time.

= A constructor is never used to reset
instance variables of an existing object.

47

5.2 A Student Class

i

A class template can include more than one
constructor, provided each has a unique
parameter list; however, all the constructors must
have the same name- that is, the name of the
class.

Constructors with empty parameter lists and are
called default constructors.

If a class template contains no constructors then
JVM provides a primitive default constructor.

This constructor initializes numeric variables to
zero and object variables to null, thus indicating
that the object variables currently reference no

objects.
48

5.2 A Student Class

o

L/

To illustrate we add several constructors to the student class.

// Default constructor —-- initialize name to the empty string and

// the test scores to zero.
public Student ()

name = "";
testl = 0;
test?2 = 0;
test3 = 0;

// Parameterized constructor —-- initialize the name and test scores

// to the wvalues provided.
public Student(String nm, int tl, int t2, int €£3){
name = nm;
Testl = tl1;
LestZz = t2;
Lest3d = L3;

// Copy constructor -- initialize the name and test scores
// to match those in Lhe parameter s.
public Student(Student g)/{

rname = s.name;

testl = s.testl;

test?2 = s.LestZ;

test3 S besik3s

49

5.2 A Student Class

i

Chaining Constructors

= When a class includes several constructors, the
code for them can be simplified by chaining
them.

s [he three constructors in the Student class
each do the same thing — initialize the instance
variables.

= Simplify the code for the first and third
constructors by calling the second constructor.

= 10 call one constructor from another

constructor, we use the notation:

this (<parameters>); 50

5.2 A Student Class

i e

4

= Thus, the code for the constructors becomes (P. 167) :

// Default constructor -- initialize name to the empty string and

// the test scores to zero.
public Student/()

{
this¢™*, O, 0, 0O};

// Parameterized constructor —--

// to the wvalues provided.
public Student (String nm, int tl,

initialize the name and test scores

int t2, int t3){

name = nm;
egtl = £l
Lestd = B2%
test3 = t3;
}
// Copy constructor —-- initialize the name and test scores

// to match those in the parameter s.

public Student (Student s) {
this(s.name, s.testl, s.test2,

s.test3);

5.3 Editing, Compiling, and
Testing the Student Class

i

s [0 use the Student class, we must save
it in a file called Student.java and
compile it by typing the following in a
terminal window:

javac Student.java

m If there are no compile-time errors, the
compiler creates the byte code file
Student.class

52

5.3 Editing, Compiling, and
Testing the Student Class

i
\J

= Once the Student class is compiled,
applications can declare and
manipulate student objects provided
that:

+ The code for the application and
Student.class are in the same directory
or

+ The Student.class is part of a package

53

5.3 Editing, Compiling, and
Testing the Student Class

~ The following is a small program that uses and tests the student class: TestStudent.java

public class TestStudent/| //TestStudent. txt

public static void main (String[] args) {
Student sl, s2;
String &STE;

int i;

sl = new Student{(); // Instantiate a student object
sl.setName ("Bill"); // Set the student's name to "Bill"
sl.setScore (1,84); // Set the score on test 1 to 84
sl.setScore (2,86); £ on test 2 to 86
sl.setScore (3,88); // on test 3 to 88

System.out.println ("\nHere is student sl\n" + sl);

s2 = sl; // sl and s2 now refer to the same object
s2.setName ("Ann") ; // Set the name through s2
System.out.println ("\nName of sl is now: " + sl.getName());

54

5.3 Editing, Compiling, and
Testing the Student Class

s Figure 5-5 shows the results of running
such a program.

55

o

5.3 Editing, Compiling, and
Testing the Student Class

" Finding the Locations of Run-time Errors

5 M5-DOS Prompt !WB

= The messages indicate that

+ An attempt was made to divide by zero in the
Student class’s getAverage method (line 50)

+ Which had been called from the Student class’s
toString method (line 64)

+ Which had been called by some methods we did not
write.

* Which, finally, had been called from the TestStudent

class's main method (line 13) 56

5.3 Editing, Compiling, and
Testing the Student Class

Following are the lines of code mentioned:

Student getAverage line 50 :

average = (int) Math.round ((testl + testZ2 + test3)
/ average) ;

Student toString line 64

"Average: " + getAverage();

TestStudent main line 13 :

System.out.println ("\nHere is student sl\n" + sl);

57

5.3 Editing, Compiling, and
Testing the Student Class

i
\J

s We can now unravel the error.

* Inline 13 of main, the concatenation
(+) of s1 makes an implicit call
s1.toString().

+ In line 64 of toString, the
getAverage method is called.

+ Inline 50 of getAverage, a division
by zero occurs.

58

Case Study 1

StudentApp.java

StudentApp.txt

59

5.4 The Structure and
Behavior of Methods

i

The Structure of a Method Definition

* Methods generally have the following
form:

<visibility modifier> <return type> <method name> (<parameter list>)

{

<lmplementing code>

}

60

5.4 The Structure and
Behavior of Methods

i

Return Statements

= If a method has a return type, its
implementing code must have at least
one return statement that returns a
value of that type.

s | here can be more than one return
statement in a method; however, the
first one executed ends the method.

s A return statement in a void method
quits the method and returns nothing.

61

o

5.4 The Structure and
Behavior of Methods

The following is an example of a
method that has two return statements
but executes just one of them:

boolean odd(int 1)
{
1f (1 % 2 == 0)
return false;
else
return true;

62

5.4 The Structure and
Behavior of Methods

" Formal and Actual Parameters

s Parameters listed in a method’s definition are called formal
parameters. Values passed to a method when it is invoked
are called arguments or actual parameters.

i

/[Client code /| Server code

Student s = new Student(); public void setScore (int i, int score){
Scanner reader = new Scanner(System.in); if (i == 1) testl = score;
System.out.print("Enter a test score:"); else if (1 == 2) test? = score;

int testScore = reader.nextInt(); else testd = score:
s.setScore(l, testScore); }

63

5.4 The Structure and
Behavior of Methods

i

Parameter passing

// Actual parameters in class StudentInterface

| |
s.setScore(l, testScore);

l

public void setScore ﬂint 1, int scorﬁ]{

I
// Formal parameters in class Student

i

5.4 The Structure and
Behavior of Methods

When a method has a multiple parameters,
the caller must provide the right number and
types of values.

The actual parameters must match the
formal parameters in position and type.

The rules for matching the types of a formal
and an actual parameter are similar to those
for assignment statements.

65

i

5.4 The Structure and
Behavior of Methods

The actual parameter’s type must be either
the same as or less inclusive than the type of
the corresponding formal parameter.

For example, the method Math.sgrt, which
has a single formal parameter of type
double, can receive either a double or an
iInt as an actual parameter from the caller.

66

i

5.4 The Structure and
Behavior of Methods

Parameters and Instance Variables

= The purpose of a parameter is to pass
information to a method.

= The purpose of an instance variable is to
maintain information in an object.

= [hese roles are clearly shown in the method
setScore in figure 5-8.

s [his method receives the score in the formal
parameter score.

m [his value is then transferred to one of the
instance variables test1, test2, test3.

67

5.4 The Structure and
Behavior of Methods

i

Local Variables

= Occasionally, it is convenient to have
temporary working storage for data in a
method.

s The programmer can declare /ocal
variables for this purpose.

= The following example declares a
variable average, assigns it the result
of computing the average of the integer
instance variables, and returns its value.

68

5.4 The Structure and
Behavior of Methods

o

public double getAverage ()
{

double average; //local wvariable
average = (testl + test2 + test3) / 3.0;

return average;

= Note that there is no need for the method to
receive data from the client, so we do not use

a parameter.
= [here is no need for the object to remember
the average, so we do not use an instance

variable for that. L

i

5.4 The Structure and
Behavior of Methods

Helper Methods

s Occasionally, a task performed by a
method becomes so complex that it
helps to break it into subtasks to be
solved by several other methods.

s A class can define one or more methods
to serve as helper methods.

= Helper methods are usually private,
because only methods already defined
within the class need to use them.

70

5.4 The Structure and
Behavior of Methods

i

For example, it is helpful to define a
debug when testing a class.

This method expects a string and a
double as parameters and displays
these values in the terminal window.

private void debug(String message, double value)

{

System.out.printin(message + * ” + value);

¥

pal

i

5.4 The Structure and
Behavior of Methods

The advantage to this approach is that
debugging statements throughout the
class can be turned on or off by
commenting out a single line of code:

private void debug(String message, double value)

{

//System.out.printin(message + “ " + value);

72

5.5 Scope and
Lifetime of Variables

i

A class definition consists of two principal parts:
+ a list of instance variables and
¢ a list of methods.

When an object is instantiated, it receives its
own complete copy of the instance variables,
and when it is sent a message, it activates the
corresponding method in its class.

It is the role of objects to contain data and to
respond to messages

It is the role of classes to provide a template for
creating objects and to store the code for

methods.
73

5.5 Scope and
Lifetime of Variables

i

When a method is executing, it does so
on behalf of a particular object, and the
method has complete access to the
object's instance variables.

The instance variables form a common
pool of variables accessible to all the
class's methods, called global
variables.

Variables declared within a method are
called focal variables.

7

i

5.5 Scope and
Lifetime of Variables

Scope of Variables

= The scope of a variable is that region of the
program within which it can validly appear in
lines of code.

= [he scope of a parameter or a local variable is
restricted to the body of the method that
declares it

= [he scope of a global or instance variable is all
the methods in the defining class.

= The compiler flags as an error any attempt to
use variables outside of their scope.
75

o

5.5 Scope and
Lifetime of Variables

= Following is an example that illustrates the
difference between local and global scope:

public class ScopeDemo

{
private 1nt 1AmGlobal;

public void clientMethod (int parm)

{
int iAmLocal;

}
private int helperMethod (int parml, int parm?2) {

int. lAnléca.l Too
1

76

5.5 Scope and
Lifetime of Variables

i

= [able 5-3 shows where each of the variables and
parameters can be used (i.e., its scope):

= Notice that formal parameters are also local in

scope, that is, their visibility is limited to the body
of the method in which they are declared.

VARIABLE helperMethod clientMethod

IAmGlobal Yes Yes
parm No Yes
IAmLocal No Yes
parm1 and parm2 Yes No
IAmLocalToo Yes No

5.5 Scope and
Lifetime of Variables

i

L/

Block Scope

= Within the code of a method, there can also
be nested scopes.

= Variables declared within any compound
statement enclosed in { } are said to have
block scope.

= They are visible only within the code
enclosed by { }.

78

5.5 Scope and
Lifetime of Variables

s For example, consider the following for loop
to sum 10 input humbers:

int sum = 0O;

int number =0;

Scanner reader = new Scanner () ;

for (int i = 1; 1 <= 10; i++){
System.out.print ("Enter a number: ");
number = reader.nextInt ()

sum += number;

}

System.out.println("The sum 1s " + sum);

72

5.5 Scope and
Lifetime of Variables

i

Lifetime of Variables

= The lifetime of a variable is the period
during which it can be used.

= Local variables and formal parameters exist
during a single execution of a method.

+ FEach time a method is called, it gets a fresh set
of formal parameters and local variables

*+ Once the method stops executing, the formal
parameters and local variables are no longer
accessible.

80

5.5 Scope and
Lifetime of Variables

i

s Instance variables last for the lifetime of an
object.

» When an object is instantiated, it gets a complete
set of fresh instance variables.

+ These variables are available every time a
message is sent to the object, and they, in some
sense, serve as the object's memory.

* When the object stops existing, the instance
variables disappear too.

81

5.5 Scope and
Lifetime of Variables

i

J Duplicating Variable Names

= Because the scope of a formal parameter or
local variable is restricted to a single
method, the same name can be used within
several different methods without causing a

conflict.

= When the programmer reuses the same
local name in different methods, the name
refers to a different area of storage in each
method.

= In the next example, the names iAmLocal
and parm1 are used in two methods in this
way: &

5.5 Scope and
Lifetime of Variables

i e
\U

public class ScopeDemo {
private int 1AmGlobal;

public voilid clientMethod (int parml) {
int i1AmlLocal;

}
private int helperMethod (int parml,
int parmz2) {

int iAmLiocal:

83

5.5 Scope and
Lifetime of Variables

i

L/

When to Use Instance Variables, Parameters, and
Local Variables

= The only reason to use an instance variable is to
remember information within an object.

= [he only reason to use a parameter is to transmit
information to a method.

= The only reason to use a local variable is for
temporary working storage within a method.

= A very common mistake is to misuse one kind of
variable for another.

= Following are the most common examples of these
types of mistakes:

84

i

5.5 Scope and
Lifetime of Variables

A global variable is used for temporary
working storage

= The method runs correctly only the first time.

= The next time the method is called, it adds scores to
the sum of the previous call, thus producing a much
higher average than expected.

private int sum; //global to the class
public int getAverage () {
for (int i = 1; i <= 3; i++)

sum += getScore (1) ;
return (int) Math.round(sum / 3.0);

85

5.5 Scope and
Lifetime of Variables

i

A local variable is used to remember

information in an object

= This mistake can lead to errors in cases where the
programmer uses the same name for a local variable

and a global variable.

= In this case, the variable name has been accidentally
"localized” by prefixing it with a type name.

= Thus, the value of the parameter nm is transferred to
the local variable instead of the instance variable, and
the Student object does not remember this change.

public void setName (String nm) {

//Set a student's name
String name = nm; //Whoops! we have just declared name local.

}
86

5.5 Scope and
Lifetime of Variables

o

A method accesses data by directly referencing
a global variable when it could use a
parameter instead.

// Server class
public class ServerClass{

private int x;
public void ml () {

=103 - The—reglsguroeofthe error
}
public void m2 () {

int yv = 10 / x; // Exact spot of run-time error

}

87

5.5 Scope and
Lifetime of Variables

al

// Client class

public class ClientClass

{
public void m3 ()

ml (); // Misuse of x occurs, but is hidden from
//client

mZ (); // Run-time error occurs

88

i

Summary

& Java class definitions consist of instance
variables, constructors, and methods.

@ Constructors initialize an object’s instance

variables when the object is created.

@ A default constructor expects no parameters
and sets the variables to default values.

@ Mutator methods modify an object’s instance
variables.

89

Summary (cont.)

i

#® Accessor methods allow clients to
observe the values of these variables.

#®The visibility modifier public makes

methods visible to clients.
#private encapsulates access.

#Helper methods are called from other
methods in a class definition.

= Usually declared to be private

90

i

Summary (cont.)

#&Instance variables track the state of an
object.

#Local variables are used for temporary

working storage within a method.
#Parameters transmit data to a method.

#A formal parameter appears in a
method’s signature and is referenced in
its code.

91

‘Summary (cont.)

®Actual parameter is a value passed to a
method when it is called.

#®Scope of an instance variable is the
entire class within which it is declared.

#Scope of a local variable or a parameter
is the body of the method where it is
declared.

92

‘Summary (cont.)

#Lifetime of an instance variable is the
same as the lifetime of a particular
object.

#Lifetime of a local variable and a
parameter is the time during which a
particular call of a method is active.

93

	APCS_Java_Chapter_5_Java_1_5_Page_01
	APCS_Java_Chapter_5_Java_1_5_Page_02
	APCS_Java_Chapter_5_Java_1_5_Page_03
	APCS_Java_Chapter_5_Java_1_5_Page_04
	APCS_Java_Chapter_5_Java_1_5_Page_05
	APCS_Java_Chapter_5_Java_1_5_Page_06
	APCS_Java_Chapter_5_Java_1_5_Page_07
	APCS_Java_Chapter_5_Java_1_5_Page_08
	APCS_Java_Chapter_5_Java_1_5_Page_09
	APCS_Java_Chapter_5_Java_1_5_Page_10
	APCS_Java_Chapter_5_Java_1_5_Page_11
	APCS_Java_Chapter_5_Java_1_5_Page_12
	APCS_Java_Chapter_5_Java_1_5_Page_13
	APCS_Java_Chapter_5_Java_1_5_Page_14
	APCS_Java_Chapter_5_Java_1_5_Page_15
	APCS_Java_Chapter_5_Java_1_5_Page_16
	APCS_Java_Chapter_5_Java_1_5_Page_17
	APCS_Java_Chapter_5_Java_1_5_Page_18
	APCS_Java_Chapter_5_Java_1_5_Page_19
	APCS_Java_Chapter_5_Java_1_5_Page_20
	APCS_Java_Chapter_5_Java_1_5_Page_21
	APCS_Java_Chapter_5_Java_1_5_Page_22
	APCS_Java_Chapter_5_Java_1_5_Page_23
	APCS_Java_Chapter_5_Java_1_5_Page_24
	APCS_Java_Chapter_5_Java_1_5_Page_25
	APCS_Java_Chapter_5_Java_1_5_Page_26
	APCS_Java_Chapter_5_Java_1_5_Page_27
	APCS_Java_Chapter_5_Java_1_5_Page_28
	APCS_Java_Chapter_5_Java_1_5_Page_29
	APCS_Java_Chapter_5_Java_1_5_Page_30
	APCS_Java_Chapter_5_Java_1_5_Page_31
	APCS_Java_Chapter_5_Java_1_5_Page_32
	APCS_Java_Chapter_5_Java_1_5_Page_33
	APCS_Java_Chapter_5_Java_1_5_Page_34
	APCS_Java_Chapter_5_Java_1_5_Page_35
	APCS_Java_Chapter_5_Java_1_5_Page_36
	APCS_Java_Chapter_5_Java_1_5_Page_37
	APCS_Java_Chapter_5_Java_1_5_Page_38
	APCS_Java_Chapter_5_Java_1_5_Page_39
	APCS_Java_Chapter_5_Java_1_5_Page_40
	APCS_Java_Chapter_5_Java_1_5_Page_41
	APCS_Java_Chapter_5_Java_1_5_Page_42
	APCS_Java_Chapter_5_Java_1_5_Page_43
	APCS_Java_Chapter_5_Java_1_5_Page_44
	APCS_Java_Chapter_5_Java_1_5_Page_45
	APCS_Java_Chapter_5_Java_1_5_Page_46
	APCS_Java_Chapter_5_Java_1_5_Page_47
	APCS_Java_Chapter_5_Java_1_5_Page_48
	APCS_Java_Chapter_5_Java_1_5_Page_49
	APCS_Java_Chapter_5_Java_1_5_Page_50
	APCS_Java_Chapter_5_Java_1_5_Page_51
	APCS_Java_Chapter_5_Java_1_5_Page_52
	APCS_Java_Chapter_5_Java_1_5_Page_53
	APCS_Java_Chapter_5_Java_1_5_Page_54
	APCS_Java_Chapter_5_Java_1_5_Page_55
	APCS_Java_Chapter_5_Java_1_5_Page_56
	APCS_Java_Chapter_5_Java_1_5_Page_57
	APCS_Java_Chapter_5_Java_1_5_Page_58
	APCS_Java_Chapter_5_Java_1_5_Page_59
	APCS_Java_Chapter_5_Java_1_5_Page_60
	APCS_Java_Chapter_5_Java_1_5_Page_61
	APCS_Java_Chapter_5_Java_1_5_Page_62
	APCS_Java_Chapter_5_Java_1_5_Page_63
	APCS_Java_Chapter_5_Java_1_5_Page_64
	APCS_Java_Chapter_5_Java_1_5_Page_65
	APCS_Java_Chapter_5_Java_1_5_Page_66
	APCS_Java_Chapter_5_Java_1_5_Page_67
	APCS_Java_Chapter_5_Java_1_5_Page_68
	APCS_Java_Chapter_5_Java_1_5_Page_69
	APCS_Java_Chapter_5_Java_1_5_Page_70
	APCS_Java_Chapter_5_Java_1_5_Page_71
	APCS_Java_Chapter_5_Java_1_5_Page_72
	APCS_Java_Chapter_5_Java_1_5_Page_73
	APCS_Java_Chapter_5_Java_1_5_Page_74
	APCS_Java_Chapter_5_Java_1_5_Page_75
	APCS_Java_Chapter_5_Java_1_5_Page_76
	APCS_Java_Chapter_5_Java_1_5_Page_77
	APCS_Java_Chapter_5_Java_1_5_Page_78
	APCS_Java_Chapter_5_Java_1_5_Page_79
	APCS_Java_Chapter_5_Java_1_5_Page_80
	APCS_Java_Chapter_5_Java_1_5_Page_81
	APCS_Java_Chapter_5_Java_1_5_Page_82
	APCS_Java_Chapter_5_Java_1_5_Page_83
	APCS_Java_Chapter_5_Java_1_5_Page_84
	APCS_Java_Chapter_5_Java_1_5_Page_85
	APCS_Java_Chapter_5_Java_1_5_Page_86
	APCS_Java_Chapter_5_Java_1_5_Page_87
	APCS_Java_Chapter_5_Java_1_5_Page_88
	APCS_Java_Chapter_5_Java_1_5_Page_89
	APCS_Java_Chapter_5_Java_1_5_Page_90
	APCS_Java_Chapter_5_Java_1_5_Page_91
	APCS_Java_Chapter_5_Java_1_5_Page_92
	APCS_Java_Chapter_5_Java_1_5_Page_93

