Lesson 6:

N
L/

Control Statements
Continued

Updated for Java 1.5,

( with additions and modifications by)
Mr. Dave Clausen




i

Lesson 6: Control
Statements Continued

L/

Objectives:

= Construct complex Boolean expressions using
the logical operators && (AND), || (OR), and !
(NOT).

= Understand the logic of nested if statements
and extended if statements.

= Construct nested loops.

= Construct truth tables for Boolean expressions.

= Create appropriate test cases for if statements

and loops.
2




i

Lesson 6: Control
Statements Continued

Vocabulary:

arithmetic overflow
boundary condition

combinatorial
explosion

complete code
testingcoverage

equivalence class

extended if
statement

extreme condition
logical operator
nested if statement
nested loop

quality assurance
robust

truth table




6.1 Logical Operators

i
\J

= Java includes three logical operators equivalent
iIn meaning to the English words AND, OR, and
NOT.

= [hese operators are used in the Boolean
expressions that control the behavior of if, while,
and for statements.

= For instance, consider the following sentences:

1. If the sun is shining AND it is 8 am then let's go for a
walk else let's stay home.

2. If the sun is shining OR it is 8 am then let's go for a
walk else let's stay home.

3. If NOT the sun is shining then let's go for a walk else
let's stay home.

4




i

6.1 Logical Operators

The phrases "the sun is shining" and "it is 8 am" are
operands and the words AND, OR, and NOT are
operators.

In the first sentence, the operator is AND.

+ Consequently, if both operands are true, the condition as
a whole is true. If either or both are false, the condition
is false.

In the second sentence, which uses OR, the condition

is false only if both operands are false; otherwise, it is
true.

In the third sentence, the operator NOT has been
placed before the operand, as it would be in Java.

 If the operand is true, then the NOT operator makes the

condition as a whole false. >




6.1 Logical Operators

i

s We summarize these observations in the three
parts of Table 6-1.

= Each part is called a &ruth table, and it shows
how the value of the overall condition depends
on the values of the operands.

= When there is one operand, there are two
possibilities. For two operands, there are
four; and for three operands, there are eight.

= In general there are 2" combinations of true
and false for n operands.




6.1 Logical Operators

o

L/

THE SUN IS
SHINING

ITIS 8 A.M. THE SUN IS SHINING
ANDIT IS 8 A.M.

ACTION TAKEN

true true true go for a walk
true false false stay at home
false true false stay at home
false false false stay at home
SHINING ORITIS 8 A.M.
true true true go for a walk
true false true go for a walk
false true true go for a walk
false false false stay at home
SHINING IS SHINING

| true false stay at home
false true go for a walk




i

6.1 Logical Operators

= Dropping the column labeled "action
taken," we can combine the three truth
tables into one, as illustrates in Table 6-2.

= The letters P and Q represent the

operands.
> o |pANDO |PORQ_[NOTP_
true true true true false
true false false true
false true false true true

false false false false




i

6.1 Logical Operators and ( )

b 4

If (the sun is shining AND it is 8 am) OR (NOT
your brother is visiting) then let's go for a walk
else let's stay at home.

* Expressions inside parentheses are evaluated before
those that are not.

+  We will go for a walk at 8 A.M. on sunny days or when
your brother does not visit.

Ifthe sun is shining AND (it is 8 A.M. OR (NOT
your brother is visiting)) then let's go for a walk
else let's stay at home.

» Before we go for a walk, the sun must be shining.

» In addition, one of two things must be true.

» Either it is 8 am or your brother is not visiting.




6.1 Logical Operators

i

Java's Logical Operators and Their Precedence

= In Java the operators AND, OR, and NOT
are represented by &&, ||, and !,
respectively.

= Their precedence is shown in Table 6-3.

s Observe that NOT (!) has the same high
precedence as other unary operators,
while AND (&&) and OR (]||) have low
precedence, with OR below AND.

10




o

6.1 Logical Operators

i

OPERATION SYMBOL PRECEDENCE (FROM | ASSOCIATION
HIGHEST TO LOWEST)
1

Grouping () Not applicable
Method selector - 2 Left to right
Unary plus + 3 Not applicable
Unary minus - < Not applicable
Not ! 3 Not applicable
Multiplication * 4 Left to right
Division / 4 Left to right
Remainder or

modulus % 4 Left to right
Addition + s Left to right
Subtraction - 5 Left to right
Relational operators < <= 6 Not applicable
And && 8 Left to right
Or | | 9 Left to right
Assignment = %= 10 Right to left
operators

11




i

6.1 Logical Operators

L/

Examples

= Following are some illustrative examples based
on the employment practices at ABC Company.

= The company screens all new employees by
making them take two written tests.

= A program then analyzes the scores and prints a
list of jobs for which the applicant is qualified.
Here is the relevant code:

12




6.1 Logical Operators

Scanner reader = new Scanner (System.in);

int score1, score2;

System.out.print ("Enter the first test score: ");

score1 = reader.nextInt( );

System.out.print ("Enter the second test score: ");

score2 = reader. nextint( );

/I Managers must score well (90 or above) on both tests.

if (score1 >= 90 && score2 >= 90)
System.out.printin("Qualified to be a manager");

// Supervisors must score well (90 or above) on just one

test

if (score1 >= 90 || score2 >= 90)
System.out.printin("Qualified to be a supervisor");

// Clerical workers must score moderately well on one test

/I (70 or above), but not badly (below 50) on either.

if ((score1 >=70 || score2 >=70) &&
l(score1 < 30 || score2 < 50))
System.out.printin("Qualified to be a clerk™);

13




i

6.1 Logical Operators

Boolean Variables
= The complex Boolean expressions in the preceding
examples can be simplified by using Boolean variables.
= A Boolean variable can be true or false and is declared to
be of type boolean.

= Primitive data type

= Example:

¢® boolean bl = true;
1T 1 Bl

{

<do something>

}

14




6.1 Logical Operators

Scanner reader = new Scanner (System.in);

int score1, scoreZ;

boolean bothHigh, atLeastOneHigh, atLeastOneModerate, noLow;
System.out.print ("Enter the first test score: ");

score1 = reader.nextInt( );

System.out.print ("Enter the second test score: ");

score2 = reader.nextInt( );

bothHigh = (score1 >= 90 && score2 >= 90); // parentheses
atLeastOneHigh = (score1 >= 90 || score2 >= 90); // optional
atLeastOneModerate = (score1 >= 70 || score2 >= 70); // here

noLow = I(score1 < 50 || score2 < 50);
if (bothHigh)

System.out.printin("Qualified to be a manager");
if (atLeastOneHigh)

System.out.printin("Qualified to be a supervisor");
if (atLeastOneModerate && nolLow)
System.out.printin("Qualified to be a clerk");

15




Ve
\L/

6.1 Logical Operators

In order to rewrite the previous code, we first create a truth table
for the complex if statement, as shown in Table 6-4.

P: THESUN | O: YOU HAVE | R: ITISSUNDAY |P && (Q || R)
SHINES TIME

ACTION
TAKEN

true true true true walk
true true false true walk
true false true true walk
true false false false stay
home
false true true false stay
home
false true false false stay
home
false false true false stay
home
false false false false stay
home

16




i e
J

6.1 Logical Operators

= Then implement each line of the truth
table with a separate if statement involving
only && (AND) and ! (NOT).

= Applying the technique here yields:

if (the sun shines && you have time && it is Sunday) walk;
if (the sun shines && you have time && lit is Sunday) walk;
if (the sun shines && lyou have time && it is Sunday) walk;
if (the sun shines && !you have time && lit is Sunday) stay
home;

if (the sun shines && you have time && it is Sunday) stay
home;

if (!the sun shines && you have time && lit is Sunday) stay
home;

if (Ithe sun shines && lyou have time && it is Sunday) stay




o

6.1 Logical Operators

= In this particular example, the verbosity can be
reduced without reintroducing complexity by
noticing that the first two if statements are
equivalent to:

If ( the sun shines && you have time) walk;

= And the last four are equivalent to
iIf (Ithe sun shines) stay home;

= Putting all this together yields:

If (the sun shines && you have time) walk;
If (the sun shines && !you have time && it is Sunday)
walk;

If ('the sun shines) stay home; 18




6.1 Logical Operators

i
\J

Some Useful Boolean Equivalences

= There is often more than one way to write a
Boolean expression.

= For instance, the following pairs of Boolean
expressions are equivalent as truth tables readily
confirm: (The first two are De Morgan’s Laws)
'(p || 9) equivalentto !'p &&!q
I(p && Q) equivalentto !p || !q
pll(a&&r) equivalentto (p||q)&&(pllr)

p&& (g || r) equivalentto (p&&q) || (p &&r)
19




6.1 Logical Operators

Short-circuit evaluation

= The Java virtual machine sometimes knows the value
of a Boolean expression before it has evaluated all of
Its parts.

+ In the expression (p && q), if p is false, then so is the
expression, and there is no need to evaluate q.

» In the expression ( true || false ) the entire condition is true
because the first operand of the Boolean expression is true,
the second operand is not examined at all

= When evaluation stops as soon as possible, is called
short-circuit evaluation.

= In contrast, some programming languages use
complete evaluation in which all parts of a Boolean
expression are always evaluated.

20




i

Case Study 1

#Compute Weekly Pay

PayrollSystemApp.java
PayrollSystemApp.txt

PayrollSystemInterfaceWithOutBreak.java
PayrollSystemInterfaceWithOutBreak.txt

Employee.java
Employee.txt




i

Testing String Equivalence

#®Be careful when testing the equivalence
of Strings (Remember that Strings are
objects, not primitive data types):

String a, b;

The Boolean, if (a = = b) only determines
if a and b reference the same object.

The expression, if (a.equals(b)) determines
is the Strings are equal and identical.

22




i

6.2 Testing if Statements

s Quality assurance is the ongoing process
of making sure that a software product is
developed to the highest standards
possible subject to the ever-present
constraints of time and money.

= Faults are fixed most inexpensively early in
the development life cycle.

m Test data should try to achieve complete
code coverage, which means that every
line in a program is executed at least once.

23




i

6.2 Testing if Statements

s All the sets of test data that exercise a program in
the same manner are said to belong to the same
equivalence class, which means they are
equivalent from the perspective of testing the
same paths through the program.

= The test data should also include cases that
assess a program's behavior under boundary
conditions - that is, on or near the boundaries
between equivalence classes.

s We should test under extreme conditions - that
is, with data at the limits of validity.

24




i

6.2 Testing if Statements

s Data validation rules should also be tested.

s We need to enter values that are valid and
invalid, and we must test the boundary
values between the two.

25




6.2 Testing if Statements

{
L/

Table 6-5 summarizes our planned tests:

TYPE OF TEST DATA USED

Code coverage employee type: 1
hourly rate: 10
hours worked: 30 and 50

Boundary conditions employee type: 1
hourly rate: 10
hours worked: 39, 40, and 41

Extreme conditions employee type: 1
hourly rate: 10
hours worked: O and 168

Tests when the employee type is 2 employee type: 2
hourly rate: 10
hours worked: 30 and 50

Data validation rules type: 0,1, 2, and 3
hourly rate: 6.49, 6.50, 10, 30.50, and 30.51
hours worked: 0, 1, 30, 60, and 61

26




6.3 Nested if Statements

= Here is an everyday example of nested if's
written in Javish:

If (the time is after 7 PM)
{
If (you have a book)
read the book;

else
watch TV;

J

else
go for a walk;

27




6.3 Nested if Statements

i

= Although this code is not complicated, it is a little
difficult to determine exactly what it means
without the aid of the truth table illustrated in

Table 6-6.
true true read book
true false watch TV
false true walk
false false walk

28




i

6.3 Nested if Statements

L/

= As a substitute for a truth table, we can draw a flowchart as
shown in Figure 6-4.

k4 k J
Read the Watch
book TV

29




i

Nested if Statements

) #Nested if statement

s an if statement used within another if
statement where the “true” statement or
action is.

if (score >=50)
if (score>=69.9)
//blah, blah, blah true for score>=69.9 and score>=50
else
//blah, blah, blah false score>=69.9 true score >=50
else
//blah, blah, blah false for score >=50

30




Extended if statements

i

s Extended if statements are Nested if
statements where another if statement is
used with the else clause of the original if
statement.

if (condition 1)
actionl
else if (condition2)
action?
else
action3

31




i

Extended if Example Form 1

System.out.print("Enter the test average: ");
testAverage = reader.nextInt();
if (testAverage >= 90)
System.out.println("grade is A");
else{
if (testAverage >= 80)
System.out.println("grade is B");
else{

if (testAverage >= 70)
System.out.println("grade is C");
else{
if (testAverage >= 60)
System.out.println("grade is D");
else({
System.out.println("grade is F");

32




Extended if Example Form 2

i

" @This is the same example using different

indentation.
System.out.print("Enter the test average:
testAverage = reader.nextInt();

if (testAverage >= 90)
System.out.println("grade is A");

else 1f (testAverage >= 80)
System.out.println("grade is B");
else if (testAverage >= 70)
System.out.println("grade is C");
else if (testAverage >= 60)
System.out.println("grade is D");
else
System.out.println("grade is F");




o

6.4 Logical Errors
In Nested ifs

braces.

Misplaced Braces
= One of the most common mistakes involves misplaced

/I Version 1
if (the weather is wet)
{
if (you have an umbrella)
walk;
else
run;
k
// Version 2
if (the weather is wet)
{
if (you have an umbrella)
walk;
}
else
run;

34




i

6.4 Logical Errors
In Nested ifs

s To demonstrate the differences between the
two versions, we construct a truth table - as
shown in Table 6-7:

THE WEATHER | YOU HAVEAN | VERSION 1 VERSION 2
IS WET UMBRELLA OUTCOME OUTCOME

true true walk walk
true false run none
false true none run
false false none run

35



6.4 Logical Errors
In Nested ifs

i

Removing the Braces
= When the braces are removed, Java pairs
the else with the closest preceding if.

» Can create logic or syntax errors if not careful
+ Can you spot the error in the following code?

If (the weather is wet)
iIf (you have an umbrella)
open umbrella;//what’'s missing here?
walk; /lwhat’s missing here?
else

run;
36




6.4 Logical Errors
In Nested ifs

i

"Computation of Sales Commissions

= We now attempt to compute a salesperson's
commission and introduce a logical error in the
Process.

s Commissions are supposed to be computed as
follows:

+ 10% if sales are greater than or equal to $5,000

* 20% if sales are greater than or equal to $10,000

if (sales >= 5000)

commission = commission * 1.1; /l line a
else if (sales >= 10000)

commission = commission * 1.2; /lline b
/lorder of ifs should be reversed

37




i

6.4 Logical Errors
In Nested ifs

= 10 determine if the code works correctly,
we check it against representative values
for the sales, namely, sales that are:

+ |less than $5,000,

» equal to $5,000,

» between $5,000 and $10,000,
+ equal to $10,000,

» and greater than $10,000.

= As we can see from Table 6-8, the code is
not working correctly.

38




6.4 Logical Errors
In Nested ifs

1 Table 6-8
LINES EXECUTED
1,000 neither line a nor line b correct
5,000 ling @ correct
7,000 lin & correct
10,000 ling a incorrect
12,000 ling @ incorrect

39



6.4 Logical Errors
In Nested ifs

Corrected Computation of Sales Commissions

n After a little reflection, we realize that the
conditions are in the wrong order.

= Here is the corrected code:

If (sales >= 10000)

commission = commission * 1.2; /l line b
else if (sales >= 5000)

commission = commission * 1.1; /I line a

40




6.4 Logical Errors
In Nested ifs

o

L/

= Table 6-9 confirms that the code now works correctly:

VALUE OF SALES LINES EXECUTED VALIDITY

1,000 neither ling a nor fine b correct
5,000 lin & correct
7,000 ling @ correct
10,000 ling b correct
12,000 ling b correct

41,




o

6.4 Logical Errors
In Nested ifs

" Avoiding Nested ifs (Author’s opinion)

s Sometimes getting rid of nested if's is the
best way to avoid logical errors.

= This is easily done by rewriting nested ifs
as a sequence of independent if
statements.

If (5000 <= sales && sales < 10000)
commission = commission * 1.1;
If (10000 <= sales)
commission = commission * 1.2;

42




6.4 Logical Errors
In Nested ifs

= And here is another example involving the
calculation of student grades:

If (90 <= average ) grade is A;
If (80 <= average && average < 90) grade is B;
If (70 <= average && average < 80) grade is C;
If (60 <= average && average < 70) grade is D;
if ( average < 60) grade is F;

43




i

Avoid Sequential Selection

@& Mr. Clausen’s Opinion:

@ This is not a good programming practice.
= Less efficient
= only one of the conditions can be true

*» these are called mutually exclusive conditions
if (conditionl) //avoid this structure

actionl //use extended selection
if (condition2)

action2
if (condition3)

action3

# [ suggest avoiding nested ifs, while using
extended ifs.

44




Switch Statements

i

@ Allows for multiple selection that is easier to
follow than nested or extended if statements.

(Not part of APCS Subset)
switch (age) //age is of type int

{
case 18: <statementl>
break; //"only acceptable use of break
case 19: <statement2>
break; //in beginning course” (Mr. C.)
case 20: <statement3>
break;
default: <default statement>

h

45




Switch: Flow of Execution

= The selector (argument) for switch must be of an
ordinal type (not double)
+ switch (age)
+ The variable “age” is called the selector in our example.

+ If the first instance of the variable is found among the
labels, the statement(s) following this value is executed
until reaching the next break statement.

+ Program control is then transferred to the next statement
following the entire switch statement.

+ If no value is found, the default statement is executed.
+ Switch statements are the same in Java as in C++

i

46




i

Switch Statement Example 2

switch (grade)

{

case ‘A’ :
case ‘B’ :

case 'C':

case ‘D’ :

case ‘F’ :

default :

//grade is of type char

System.out.printin(*Good work!™);
break;

System.out.printin(™ Average work”);
break;

System.out.printin(™ Poor work");
break;

System.out.printin(*”” + grade + " is not a valid
letter grade.”);

break;

47




i

6.5 Nested Loops

L/

= There are many programming situations in
which loops are nested within loops - these are
called nested loops.

s For example (don't use break to exit nested loops either):

System.out.print("Enter the lower limit: ");

lower = reader.nextInt();

System.out.print("Enter the upper limit: ");

upper = reader.nextlInt();
for (n = lower; n <= upper; n++){
innerLimit = (int)Math.sqgrt (n);
for (d = 2; d <= innerLimit; d++){
if (n $ d == 0)
break;
}
if (d > innerLimit)
System.out.println (n + " is prime");

48




Nested loops w/o break

T System.out.print ("Enter the lower limit: ");

lower = reader.nextint( );
System.out.print ("Enter the upper limit: ");
upper = reader. nextint( );
for (n = lower; n <= upper; n++)
{
innerLimit = (int)Math.sqrt (n);
while((divisor<= innerLimit ) && (userNumber % divisor != 0))

{

divisor++;

}

if (d > limit)
System.out.printin (n + " is prime");
}

49




i

Nested Loops 2

& Nested loop

= When a loop is one of the statements within the
body of another loop.

for (k=1; k<=5; ++k) //outer loop
for (j=1; j<=3; ++j) //inner loop
System.out.printin(k+j); //body of loop

+ Each loop needs to have its own level of indenting.
» Use comments to explain each loop
» Blank lines around each loop can make it easier to read

50




i

Repetition and Selection

®The use of an if statement within a loop
to look for a certain condition in each
iteration of the loop. (not to break out of the

loop)

s Examples:
» to generate a list of Pythagorean Triples
+» to perform a calculation for each employee
+ to find prime numbers

51




Repetition and Selection Example

\L/

//void List_All_Primes(int number){
boolean prime;
int candidate, divisor;
double limit_for_check;
for (candidate = 2; candidate <= number; candidate++){
prime = true;
divisor = 2;
limit_for_check = Math.sqgrt(candidate);
while ((divisor <= limit_for_check) && prime)
if (candidate % divisor == 0)
prime = false; // candidate has a divisor

else
divisor = divisor + 1;
if (prime) //Print list of primes
System.out.println (candidate + “is prime");

} 52




i

6.6 Testing Loops

= The presence of looping statements in a program
increases the challenge of desighing good test
data.

= When designing test data, we want to cover all
possibilities.
= Loops often do not iterate some fixed number of
times
= We need to design test data to cover situations
where a loop iterates:
+ Zero times
* One time
+ Multiple times

53




6.6 Testing Loops

i

= T0 illustrate, we develop test data for the print
divisors program:
// Display the proper divisors of a number
System.out.print("Enter a positive integer: ");
int n = reader.nextInt();
int limit =n / 2;
for (int d = 2; d <= limit; d++){
if (n ¥ d == 0)
System.out.print (d + " ");

54




i

6.6 Testing Loops

= By analyzing the code, we conclude that if n
equals 0, 1, 2, or 3, the limit is less than 2, and
the loop is never entered.

= If n equals 4 or 5, the loop is entered once.

= If n is greater than 5, the loop is entered
multiple times.

= All this suggests the test data shown in
Table 6-10.

55




i

6.6 Testing Loops

J Table 6-10
No iterations 0,1,2,and 3
One iteration 4 and5
Multiple iterations for a number with divisors 24

Multiple iterations for a number without divisors 29

56




i

6.6 Testing Loops

#Combinatorial Explosion: Creating
test data to verify multiple dependant
components can result in huge amount
of test data.

= Example:

+ 3 dependent components, each of which
requires 5 tests to verify functionality

+ Total number of tests to verify entire
program is 5*5*5=125.

57




i

6.6 Testing Loops

#Robust program: Tolerates errors in
user inputs and recovers gracefully

#®Best and easiest way to write robust
programs is to check user inputs
immediately on entry.

= Reject invalid user inputs.

58




Case Study 2

Fibonacci.java
Fibonacci.txt

FibonacciNoBreaks.java

FibonacciNoBreaks.txt

59




Loop Verification

i
\J

& Process of guaranteeing that a loop performs
its intended task

= Independently of testing
#® assert statement: Allows programmer to

evaluate a Boolean expression and halt the
program with an error message if the
expression’s value is false

s General form:

¢ assert <Boolean expression>

60




i

Loop Verification (cont.)

#®To enable when running the program:

mjava —-enableassertions
AdavaProgram

& Example 6.1: Assertthat x 1= 0

public class TestAssert{
public static void main(String[] args){

int x = 0;
assert x != 0;

61




- Loop Verification (cont.)

¢+ Command Prompt

C:sJavafiles>java —enableassertions TestAssert
Exception in thread “"main" jJava.lang.HAssertionkrror
at TestAssert.main(lestAssert.java:?)

C:sJavafiles?

Figure 6-6: Failure of an assert statement

62




f"\

Loop Verification: Assertions
with Loops

QOutput assertions: State what can be
expected to be true when the loop is exited

# Input assertions: State what can be
expected to be true before a loop is entered

INTEGER | PROPERDIVISORS _[sum

6 1,2,3 6
9 1,3 4
12 1,2,3,4,6 16

Table 6-12: Sums of the proper divisors of some integers

63




Loop Verification: Assertions
with Loops (cont.)

i

" $Some proper divisors of positive integer:

divisorSum = 0;
for (trialDivisor = 1; trialDivisor <= num / 2; ++trialDivisor)
if (num % trialDivisor == 0)
divisorSum = divisorSum + trialDivisor;

# Input assertions:
= num IS a positive integer

B divisorsSum ==

@ Output assertion:

s divisorSum is sum of all proper divisors

of num
64




i

Loop Verification: Invariant and
Variant Assertions

L/

# Loop invariant: Assertion that expresses a
relationship between variables that remains
constant throughout all loop iterations

% Loop variant: Assertion whose truth
changes between the first and final iteration

= Stated so that it guarantees the loop is exited
@ Usually occur in pairs

65




i

Loop Verification: Invariant and
Variant Assertions

divisorsSum = 0;

// 1. num is a positive integer. (input assertion)
// 2. divisorSum == 0.

assert num > 0 && divisorsum == 0;

for (trialDivisor = 1; trialDivisor <= num / 2; ++trialDivisor)

// trialDivisor is incremented by 1 each time (variant assertion)
// through the loop. It eventually exceeds the

i

/7
!/

//
//

value (num / 2), at which point the loop is exited.

if (num % trialDivisor == 0)
divisorsum = divisorSum + trialDivisor;

divisorSum is the sum of proper divisors of (invariant assertion)
num that are less than or equal to trialDivisor.

divisorSum is the sum of (output assertion)
all proper divisors of num.

66




“Using assert with JCreator

" To use assertions with Jcreator:
1. Go to Configure menu > Options

2. Now in the "Options" dialog, click on JDK Tools item
on the left

3. From the "Select Tool Type" drop down list on the
right side, select "Run Applications".

4. In the list below, click "<Default>" (even though it
IS “grayed out™) and click the Edit button

5. In the "Tool Configuration: Run Application” dialog
box, click the

"Parameters” tab

6. In the "Parameters” text box, begin with —ea or
-enableassertions before -classpath "$[ClassPath]"
$[JavaClass] 67




i

Jcreator assert Setup

Tool Configuration : Run Application

Mame :

\l Eommand| Pararmeters |

Parameters : |BE -classpath "$[ClazsPath]" $[JavaClass]

Usze class-path

[ Prompt for main method arguments

[ ] Show additional run-time info

[ Cancel J

68




Assert Test

TestAssert.java

TestAssert.txt

69




i

Design, Testing, and Debugging
Hints

L/

#Most errors involving selection
statements and loops are not syntax
errors caught at compile time.

#The presence or absence of braces can
seriously affect the logic of a selection
statement or loop.

70




i

Design, Testing, and Debugging
Hints (cont.)

L/

@& When testing programs with if or if-else
statements, use data that force the program
to exercise all logical branches.

@ When testing programs with i f statements,
formulate equivalence classes, boundary
conditions, and extreme conditions.

@ Use an if-else statement rather than two
if statements when the alternative courses
of action are mutually exclusive.

pal




i

Design, Testing, and Debugging
Hints (cont.)

L/

# When testing a loop, use limit values as well
as typical values.

@ Check entry and exit conditions for each loop.

@ For a loop with errors, use debugging output
statements to verify the control variable’s
value on each pass through the loop.

s Check value before the loop is initially entered,
after each update, and after the loop is exited.

72




i

Summary

#A complex Boolean expression contains

one or more Boolean expressions and
the logical operators s«& (AND), | |

(OR), and ! (NOT).

# A truth table can determine the value of
any complex Boolean expression.

#Java uses short-circuit evaluation of
complex Boolean expressions.

73




i

Summary (cont.)

#Nested if statements are another way
of expressing complex conditions.

#®A nested i f statement can be

translated to an equivalent i £
statement that uses logical operators.

#An extended or multiway if statement

expresses a choice among several
mutually exclusive alternatives.

7




i

Summary (cont.)

#®Loops can be nested in other loops.

#®Equivalence classes, boundary
conditions, and extreme conditions are
important features used in tests of

control structures involving complex
conditions.

#Loops can be verified to be correct by
using assertions, loop variants, and loop
Invariants.

75




	APCS_Java_Lesson_6_Java_1_5_Page_01
	APCS_Java_Lesson_6_Java_1_5_Page_02
	APCS_Java_Lesson_6_Java_1_5_Page_03
	APCS_Java_Lesson_6_Java_1_5_Page_04
	APCS_Java_Lesson_6_Java_1_5_Page_05
	APCS_Java_Lesson_6_Java_1_5_Page_06
	APCS_Java_Lesson_6_Java_1_5_Page_07
	APCS_Java_Lesson_6_Java_1_5_Page_08
	APCS_Java_Lesson_6_Java_1_5_Page_09
	APCS_Java_Lesson_6_Java_1_5_Page_10
	APCS_Java_Lesson_6_Java_1_5_Page_11
	APCS_Java_Lesson_6_Java_1_5_Page_12
	APCS_Java_Lesson_6_Java_1_5_Page_13
	APCS_Java_Lesson_6_Java_1_5_Page_14
	APCS_Java_Lesson_6_Java_1_5_Page_15
	APCS_Java_Lesson_6_Java_1_5_Page_16
	APCS_Java_Lesson_6_Java_1_5_Page_17
	APCS_Java_Lesson_6_Java_1_5_Page_18
	APCS_Java_Lesson_6_Java_1_5_Page_19
	APCS_Java_Lesson_6_Java_1_5_Page_20
	APCS_Java_Lesson_6_Java_1_5_Page_21
	APCS_Java_Lesson_6_Java_1_5_Page_22
	APCS_Java_Lesson_6_Java_1_5_Page_23
	APCS_Java_Lesson_6_Java_1_5_Page_24
	APCS_Java_Lesson_6_Java_1_5_Page_25
	APCS_Java_Lesson_6_Java_1_5_Page_26
	APCS_Java_Lesson_6_Java_1_5_Page_27
	APCS_Java_Lesson_6_Java_1_5_Page_28
	APCS_Java_Lesson_6_Java_1_5_Page_29
	APCS_Java_Lesson_6_Java_1_5_Page_30
	APCS_Java_Lesson_6_Java_1_5_Page_31
	APCS_Java_Lesson_6_Java_1_5_Page_32
	APCS_Java_Lesson_6_Java_1_5_Page_33
	APCS_Java_Lesson_6_Java_1_5_Page_34
	APCS_Java_Lesson_6_Java_1_5_Page_35
	APCS_Java_Lesson_6_Java_1_5_Page_36
	APCS_Java_Lesson_6_Java_1_5_Page_37
	APCS_Java_Lesson_6_Java_1_5_Page_38
	APCS_Java_Lesson_6_Java_1_5_Page_39
	APCS_Java_Lesson_6_Java_1_5_Page_40
	APCS_Java_Lesson_6_Java_1_5_Page_41
	APCS_Java_Lesson_6_Java_1_5_Page_42
	APCS_Java_Lesson_6_Java_1_5_Page_43
	APCS_Java_Lesson_6_Java_1_5_Page_44
	APCS_Java_Lesson_6_Java_1_5_Page_45
	APCS_Java_Lesson_6_Java_1_5_Page_46
	APCS_Java_Lesson_6_Java_1_5_Page_47
	APCS_Java_Lesson_6_Java_1_5_Page_48
	APCS_Java_Lesson_6_Java_1_5_Page_49
	APCS_Java_Lesson_6_Java_1_5_Page_50
	APCS_Java_Lesson_6_Java_1_5_Page_51
	APCS_Java_Lesson_6_Java_1_5_Page_52
	APCS_Java_Lesson_6_Java_1_5_Page_53
	APCS_Java_Lesson_6_Java_1_5_Page_54
	APCS_Java_Lesson_6_Java_1_5_Page_55
	APCS_Java_Lesson_6_Java_1_5_Page_56
	APCS_Java_Lesson_6_Java_1_5_Page_57
	APCS_Java_Lesson_6_Java_1_5_Page_58
	APCS_Java_Lesson_6_Java_1_5_Page_59
	APCS_Java_Lesson_6_Java_1_5_Page_60
	APCS_Java_Lesson_6_Java_1_5_Page_61
	APCS_Java_Lesson_6_Java_1_5_Page_62
	APCS_Java_Lesson_6_Java_1_5_Page_63
	APCS_Java_Lesson_6_Java_1_5_Page_64
	APCS_Java_Lesson_6_Java_1_5_Page_65
	APCS_Java_Lesson_6_Java_1_5_Page_66
	APCS_Java_Lesson_6_Java_1_5_Page_67
	APCS_Java_Lesson_6_Java_1_5_Page_68
	APCS_Java_Lesson_6_Java_1_5_Page_69
	APCS_Java_Lesson_6_Java_1_5_Page_70
	APCS_Java_Lesson_6_Java_1_5_Page_71
	APCS_Java_Lesson_6_Java_1_5_Page_72
	APCS_Java_Lesson_6_Java_1_5_Page_73
	APCS_Java_Lesson_6_Java_1_5_Page_74
	APCS_Java_Lesson_6_Java_1_5_Page_75

