The Insertion
Sort

Mr. Dave Clausen
La Canada High School

Insertion Sort Description

The insertion sort takes advantage an array’s partial
ordering and Is the most efficient sort to use when you
know the array Is already partially ordered.

On the kth pass, the kth item should be inserted Into its
place among the first k items in the vector.

After the kth pass (k starting at 1), the first k items of the
vector should be In sorted order.

This is like the way that people pick up playing cards and
order them in their hands. When holding the first (k - 1)
cards in order, a person will pick up the kth card and
compare it with cards already held until its sorted spot Is
found. Mr. Dave Clausen 2

Insertion Sort Algorithm

For each k from 1 to n - 1 (k is the index of vector element to insert)
Set item_to_insert to v[K]
Setjtok-1
(j starts at k - 1 and is decremented until insertion position is found)
While (insertion position not found) and (not beginning of vector)
If item_to_insert < v[j]
Move V[j] to index position j + 1
Decrement j by 1
Else
The insertion position has been found
Iitem_to_insert should be positioned at index j + 1

Mr. Dave Clausen 3

Java Code For Insertion Sort

public static void insertionSort(int[] list){
int itemToInsert, j; /I On the kth pass, insert item k into its correct position among
boolean stillLooking; / the first k entries in array.

for (int k = 1; k < list.length; k++){
/I Walk backwards through list, looking for slot to insert list[K]
itemTolnsert = list[K];
j=k-1;
stillLooking = true;
while ((j >= 0) && stillLooking)
If (itemTolnsert < list[j]) {
list[j + 1] = list[j];
-
}else
stillLooking = false;

// Upon leaving loop, j + 1 is the index
/l where itemTolnsert belongs

list[j + 1] = itemTolnsert;

}
}

Mr. Dave Clausen

C ++ Code For Insertion Sort

void Insertion_Sort(apvector<int> &v){
Int item_to_insert, j; // On the kth pass, insert item k into its correct
bool still_looking; // position among the first k entries in vector.
for (int k = 1; k < v.length(); ++k)
{ /I Walk backwards through list, looking for slot to insert v[K]
item_to_insert = v[K];
j=k-1;
still_looking = true;
while ((j >= 0) && still_looking)
If (item_to_insert <vVv[j])
{
vh + 1] =vl];
~J;
¥
else
still_looking = false; // Upon leaving loop, j + 1 is the index
v[j + 1] = item_to_insert; // where item_to insert belongs

}

} Mr. Dave Clausen 5

Insertion Sort Example

The Unsorted Vector: 80
40

For each pass, the index j begins at 32
the (k - 1)st item and moves that 84
Iitem to position j + 1 until we find 61

the insertion point for what was

originally the kth item.

We start with k =1
and set | = k-1 or O (zero)

Mr. Dave Clausen

The First Pass

K=2

Insert 40, 80 Insert 40 —fAL0]
compare / 80 80

& move 2o 32

84 84

61 61 61

Iitem_to_insert
40

Mr. Dave Clausen

61

The Second Pass

40

Insert 32, 30

compare / 80
& move a4

61

3

K=
Compare
& move 40
80
84
61
Iitem_to_Insert

32

Mr. Dave Clausen

Insert 32

61

The Third Pass

K=4
32
40

30 Insert 847

/8 compare

& stop

Iitem_to_insert
84

Mr. Dave Clausen

The Fourth Pass

K=5
32 32
Compare

L 40 & stop

80 ompare e{0) Insert 61
Insert 61, 84 SR C 30
compare / 84 84
& move

Iitem_to_insert
61

Mr. Dave Clausen

10

What “Moving” Means

item_to_insert

B —

Place the second element
Into the variable
Iitem_to_insert.

Mr. Dave Clausen

80

40

32

84

61

11

What “Moving” Means

item_to_insert

Replace the second element
with the value of the first
element.

Mr. Dave Clausen

80
80l

32

84

61

12

What “Moving” Means

item_to_iV

Replace the first element
(in this example) with the
variable item_to_insert.

Mr. Dave Clausen

40

80

32

84

61

13

Big - O Notation

Big - O notation Is used to describe the efficiency
of a search or sort. The actual time necessary to
complete the sort varies according to the speed of

your system. Big - O notation Is an approximate
mathematical formula to determine how many
operations are necessary to perform the search or
sort. The Big - O notation for the Insertion Sort Is
O(n?), because it takes approximately n? passes to
sort the “n” elements.

Mr. Dave Clausen 14

	The Insertion Sort
	Insertion Sort Description
	Insertion Sort Algorithm
	Java Code For Insertion Sort
	C ++ Code For Insertion Sort
	Insertion Sort Example
	The First Pass
	The Second Pass
	The Third Pass
	The Fourth Pass
	Big - O Notation

