
The Insertion
Sort

Mr. Dave ClausenMr. Dave Clausen
La Cañada High SchoolLa Cañada High School

Mr. Dave Clausen 2

Insertion Sort Description
The insertion sort takes advantage an array’s partial
ordering and is the most efficient sort to use when you
know the array is already partially ordered.
On the kth pass, the kth item should be inserted into its
place among the first k items in the vector.
After the kth pass (k starting at 1), the first k items of the
vector should be in sorted order.
This is like the way that people pick up playing cards and
order them in their hands. When holding the first (k - 1)
cards in order, a person will pick up the kth card and
compare it with cards already held until its sorted spot is
found.

Mr. Dave Clausen 3

Insertion Sort Algorithm
For each k from 1 to n - 1 (k is the index of vector element to insert)

Set item_to_insert to v[k]
Set j to k - 1
(j starts at k - 1 and is decremented until insertion position is found)
While (insertion position not found) and (not beginning of vector)

If item_to_insert < v[j]
Move v[j] to index position j + 1
Decrement j by 1

Else
The insertion position has been found

item_to_insert should be positioned at index j + 1

Mr. Dave Clausen 4

Java Code For Insertion Sort
public static void insertionSort(int[] list){

int itemToInsert, j; // On the kth pass, insert item k into its correct position among

boolean stillLooking; // the first k entries in array.

for (int k = 1; k < list.length; k++){
// Walk backwards through list, looking for slot to insert list[k]

itemToInsert = list[k];
j = k - 1;
stillLooking = true;
while ((j >= 0) && stillLooking)

if (itemToInsert < list[j]) {
list[j + 1] = list[j];
j--;

}else
stillLooking = false;

// Upon leaving loop, j + 1 is the index
// where itemToInsert belongs

list[j + 1] = itemToInsert;
}

}

Mr. Dave Clausen 5

C ++ Code For Insertion Sort
void Insertion_Sort(apvector<int> &v){

int item_to_insert, j; // On the kth pass, insert item k into its correct
bool still_looking; // position among the first k entries in vector.
for (int k = 1; k < v.length(); ++k)
{ // Walk backwards through list, looking for slot to insert v[k]

item_to_insert = v[k];
j = k - 1;
still_looking = true;
while ((j >= 0) && still_looking)

if (item_to_insert < v[j])
{

v[j + 1] = v[j];
--j;

}
else

still_looking = false; // Upon leaving loop, j + 1 is the index
v[j + 1] = item_to_insert; // where item_to_insert belongs

}
}

Mr. Dave Clausen 6

80
40
32
84
61

For each pass, the index j begins at
the (k - 1)st item and moves that
item to position j + 1 until we find
the insertion point for what was
originally the kth item.

We start with k = 1
and set j = k-1 or 0 (zero)

Insertion Sort Example

The Unsorted Vector:

Mr. Dave Clausen 7

The First Pass

80
40
32
84
61

Insert 40,

compare
& move

80
80
32
84
61

40
80
32
84
61

item_to_insert

40

Insert 40
K = 2

Mr. Dave Clausen 8

The Second Pass

40
80
32
84
61

Insert 32,

compare
& move

40
80
80
84
61

40
40
80
84
61

item_to_insert

32

Compare
& move

K = 3
32
40
80
84
61

Insert 32

Mr. Dave Clausen 9

The Third Pass

32
40
80
84
61

Insert 84?

compare
& stop

item_to_insert

84

K = 4

Mr. Dave Clausen 10

The Fourth Pass

32
40
80
84
61

Insert 61,

compare
& move

32
40
80
84
84

32
40
80
80
84

item_to_insert

61

Compare
& move

K = 5
32
40
61
80
84

Compare
& stop
Insert 61

Mr. Dave Clausen 11

What “Moving” Means
80
40
32
84
61

item_to_insert

Place the second element
into the variable
item_to_insert.

40

Mr. Dave Clausen 12

What “Moving” Means
80
80
32
84
61

Replace the second element
with the value of the first
element.

40

item_to_insert

Mr. Dave Clausen 13

What “Moving” Means
40
80
32
84
61

Replace the first element
(in this example) with the
variable item_to_insert.

40

item_to_insert

Mr. Dave Clausen 14

Big - O Notation

Big Big -- O notation is used to describe the efficiency O notation is used to describe the efficiency
of a search or sort. The actual time necessary to of a search or sort. The actual time necessary to
complete the sort varies according to the speed of complete the sort varies according to the speed of
your system.your system. Big Big -- O notation is an approximate O notation is an approximate
mathematical formula to determine how many mathematical formula to determine how many
operations are necessary to perform the search or operations are necessary to perform the search or
sort. The Big sort. The Big -- O notation for the Insertion Sort is O notation for the Insertion Sort is
O(nO(n22), because it takes approximately n), because it takes approximately n22 passes to passes to
sort the “n” elements.sort the “n” elements.

	The Insertion Sort
	Insertion Sort Description
	Insertion Sort Algorithm
	Java Code For Insertion Sort
	C ++ Code For Insertion Sort
	Insertion Sort Example
	The First Pass
	The Second Pass
	The Third Pass
	The Fourth Pass
	Big - O Notation

