
Fundamentals of Python:
First Programs

Chapter 1: Introduction
Modifications by

Mr. Dave Clausen

Fundamentals of Python: First Programs 2

Objectives

After completing this chapter, you will be able to:
• Describe the basic features of an algorithm
• Explain how hardware and software collaborate in

a computer’s architecture
• Give a brief history of computing
• Compose and run a simple Python program

Fundamentals of Python: First Programs 3

Fundamentals of Computer Science:
Algorithms and Information Processing

• Computer science focuses on a broad set of
interrelated ideas
– Two of the most basic ones are:

• Algorithms
• Information processing

Fundamentals of Python: First Programs 4

Algorithms

• Steps for subtracting two numbers:
– Step 1: Write down the numbers, with larger number above

smaller one, digits column-aligned from right
– Step 2: Start with rightmost column of digits and work your way

left through the various columns
– Step 3: Write down difference between the digits in the current

column of digits, borrowing a 1 from the top number’s next
column to the left if necessary

– Step 4: If there is no next column to the left, stop
• Otherwise, move to column to the left; go to Step 3

• The computing agent is a human being

Fundamentals of Python: First Programs 5

Algorithms (continued)

• Sequence of steps that describes each of these
computational processes is called an algorithm

• Features of an algorithm:
– Consists of a finite number of instructions
– Each individual instruction is well defined
– Describes a process that eventually halts after

arriving at a solution to a problem
– Solves a general class of problems

Fundamentals of Python: First Programs 6

Information Processing

• Information is also commonly referred to as data
• In carrying out the instructions of an algorithm,

computing agent manipulates information
– Starts with input produces output

• The algorithms that describe information
processing can also be represented as information

Fundamentals of Python: First Programs 7

The Structure of a Modern Computer
System

• A modern computer system consists of hardware
and software
– Hardware: physical devices required to execute

algorithms
– Software: set of these algorithms, represented as

programs in particular programming languages

Fundamentals of Python: First Programs 8

Computer Hardware

• Computers can also communicate with the external
world through various ports that connect them to
networks and to other devices

Fundamentals of Python: First Programs 9

Computer Hardware (continued)

• Random access memory (RAM) is also called
internal or primary

• External or secondary memory can be magnetic,
semiconductor, or optical

Fundamentals of Python: First Programs 10

Computer Software

• A program stored in computer memory must be
represented in binary digits, or machine code

• A loader takes a set of machine language
instructions as input and loads them into the
appropriate memory locations

• The most important example of system software
is a computer’s operating system
– Some important parts: file system, user interfaces

(terminal-based or GUIs)
• Applications include Web browsers, games, etc.

Fundamentals of Python: First Programs 11

Computer Software (continued)

Fundamentals of Python: First Programs 12

A Not-So-Brief History of
Computing Systems

Fundamentals of Python: First Programs

A Not-So-Brief History of
Computing Systems (continued)

13

Fundamentals of Python: First Programs 14

Before Electronic Digital Computers

• “Algorithm” comes from Muhammad ibn Musa Al-
Khawarizmi, a Persian mathematician

• Euclid developed an algorithm for computing the
greatest common divisor of two numbers

• The abacus also appeared in ancient times
• Blaise Pascal (1623–1662): built one of the first

mechanical devices to automate addition
• Joseph Jacquard (1752–1834): designed and

constructed a machine that automated weaving
• Charles Babbage (1792–1871): conceived Analytical

Engine

Fundamentals of Python: First Programs 15

Before Electronic Digital Computers
(continued)

• Herman Hollerith (1860–1929): developed a
machine that automated data processing for the
U.S. Census
– One of the founders of company that became IBM

• George Boole (1815–1864): developed Boolean
logic

• Alan Turing (1912–1954): explored the theoretical
foundations and limits of algorithms and
computation

Fundamentals of Python: First Programs 16

The First Electronic Digital Computers
(1940–1950)

• Late 1930s: Claude Shannon wrote paper titled “A
Symbolic Analysis of Relay and Switching Circuits”

• 1940s:
– Mark I (electromechanical)
– ENIAC (Electronic Numerical Integrator and

Calculator)
– ABC (Atanasoff-Berry Computer)
– Colossus by a group working under Alan Turing
– John von Neumann: first memory-stored programs

• Mainframe computers consisted of vacuum tubes,
wires, and plugs, and filled entire rooms

Fundamentals of Python: First Programs 17

The First Programming Languages
(1950–1965)

• The first assembly languages had operations like
ADD and OUTPUT

• Programmers entered mnemonic codes for operations
at keypunch machine

• Card reader—translated holes in cards to patterns in
computer’s memory

• Assembler—translated application programs in
memory to machine code

• High-level programming languages: FORTRAN, LISP,
COBOL
– common feature: abstraction

Fundamentals of Python: First Programs 18

Integrated Circuits, Interaction, and
Timesharing (1965–1975)

• Late 1950s: vacuum tube gave way to transistor
– Transistor is solid-state device

• Early 1960s: integrated circuit enabled smaller,
faster, less expensive hardware components
– Moore’s Law: processing speed and storage

capacity of HW will increase and cost will decrease
by approximately a factor of 2 every 18 months

• Minicomputers appeared
• Processing evolved from batch processing

time-sharing concurrent

Fundamentals of Python: First Programs 19

Personal Computing and Networks
(1975–1990)

• Late 1960s: Douglas Engelbart
– First pointing device (mouse) and software to

represent windows, icons, and pull-down menus on a
bit-mapped display screen

– Member of team that developed Alto (Xerox PARC)
• 1975: Altair, first mass-produced personal computer

– With Intel’s 8080 processor, first microcomputer chip
• Early 1980s: Gates and Allen build MS-DOS
• Bob Metcalfe created Ethernet, used in LANs
• ARPANET grew into what we call Internet

Fundamentals of Python: First Programs 20

Consultation, Communication, and
Ubiquitous Computing (1990–Present)
• Optical storage media developed for mass

storage
• Virtual reality: capacity to create lifelike 3-D

animations of whole-environments
• Computing is becoming ubiquitous, yet less visible
• Berners-Lee at CERN created WWW

– Based on concepts of hypermedia
– HTTP: Hypertext Transfer Protocol
– HTML: Hypertext Markup Language

Fundamentals of Python: First Programs 21

Getting Started with Python
Programming

• Early 1990s: Guido van Rossum
– invented the Python programming language

• Python is a high-level, general-purpose
programming language for solving problems on
modern computer systems

• Useful resources at www.python.org

Fundamentals of Python: First Programs 22

Running Code in the Interactive Shell

• Python is an interpreted language
• Simple Python expressions and statements can be

run in the shell
– Easiest way to open a Python shell is to launch the

IDLE
– To quit, select the window’s close box or press

Control+D
– Shell is useful for:

• Experimenting with short expressions or statements
• Consulting the documentation

Fundamentals of Python: First Programs 23

Running Code in the Interactive Shell
(continued)

Fundamentals of Python: First Programs 24

Input, Processing, and Output

• Programs usually accept inputs from a source, process
them, and output results to a destination
– In terminal-based interactive programs, these are the

keyboard and terminal display

Fundamentals of Python: First Programs 25

Input, Processing, and Output (cont’d)

Fundamentals of Python: First Programs 26

Editing, Saving, and Running a Script

• Select New Window from the File Menu
• Type your Python Source Code.
• Use the File Menu, then Save using the .py

extension
• We can then run Python program files or scripts

within IDLE
– Run Menu, then Run Module or press F5

(Windows)
• Running a script from IDLE allows you to construct

some complex programs, test them, and save them
in program libraries to reuse or share with others

Fundamentals of Python: First Programs 27

Editing, Saving, and Running a Script
(continued)

Fundamentals of Python: First Programs 28

Editing, Saving, and Running a Script
(continued)

myprogram.py

Fundamentals of Python: First Programs 29

Behind the Scenes:
How Python Works

Fundamentals of Python: First Programs 30

Detecting and Correcting Syntax
Errors

• Programmers inevitably make typographical errors
when editing programs, called syntax errors
– The Python interpreter will usually detect these

• Syntax: rules for forming sentences in a language
• When Python encounters a syntax error in a

program, it halts execution with an error message

Fundamentals of Python: First Programs 31

Program Comments and Docstrings

• Docstring example:

• End-of-line comment example:

Fundamentals of Python: First Programs 32

Detecting and Correcting Syntax
Errors (continued)

Fundamentals of Python: First Programs 33

Summary

• Fundamental ideas of computer science
– The algorithm
– Information processing

• Real computing agents can be constructed out of
hardware devices
– CPU, memory, and input and output devices

• Some real computers are specialized for a small
set of tasks, whereas a desktop or laptop computer
is a general-purpose problem-solving machine

Fundamentals of Python: First Programs 34

Summary (continued)

• Software provides the means whereby different
algorithms can be run on a general-purpose
hardware device
– Written in programming languages

• Languages such as Python are high-level
• Interpreter translates a Python program to a lower-

level form that can be executed on a real computer
• Python shell provides a command prompt for

evaluating and viewing the results of Python
expressions and statements

Fundamentals of Python: First Programs 35

Summary (continued)

• IDLE is an integrated development environment
that allows the programmer to save programs in
files and load them into a shell for testing

• Python scripts are programs that are saved in files
and run from a terminal command prompt

• When a Python program is executed, it is
translated into byte code
– Sent to PVM for further interpretation and execution

• Syntax: set of rules for forming correct expressions
and statements in a programming language

	Fundamentals of Python:�First Programs
	Objectives
	Fundamentals of Computer Science: Algorithms and Information Processing
	Algorithms
	Algorithms (continued)
	Information Processing
	The Structure of a Modern Computer System
	Computer Hardware
	Computer Hardware (continued)
	Computer Software
	Computer Software (continued)
	A Not-So-Brief History of�Computing Systems
	Before Electronic Digital Computers
	Before Electronic Digital Computers (continued)
	The First Electronic Digital Computers (1940–1950)
	The First Programming Languages (1950–1965)
	Integrated Circuits, Interaction, and Timesharing (1965–1975)
	Personal Computing and Networks (1975–1990)
	Consultation, Communication, and Ubiquitous Computing (1990–Present)
	Getting Started with Python Programming
	Running Code in the Interactive Shell
	Running Code in the Interactive Shell (continued)
	Input, Processing, and Output
	Input, Processing, and Output (cont’d)
	Editing, Saving, and Running a Script
	Editing, Saving, and Running a Script (continued)
	Editing, Saving, and Running a Script (continued)
	Behind the Scenes:�How Python Works
	Detecting and Correcting Syntax Errors
	Detecting and Correcting Syntax Errors (continued)
	Summary
	Summary (continued)
	Summary (continued)

