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Objectives

After completing this chapter, you will be able to:
• Describe the basic features of an algorithm
• Explain how hardware and software collaborate in 

a computer’s architecture
• Give a brief history of computing
• Compose and run a simple Python program
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Fundamentals of Computer Science: 
Algorithms and Information Processing

• Computer science focuses on a broad set of 
interrelated ideas
– Two of the most basic ones are:

• Algorithms
• Information processing
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Algorithms

• Steps for subtracting two numbers:
– Step 1: Write down the numbers, with larger number above 

smaller one, digits column-aligned from right
– Step 2: Start with rightmost column of digits and work your way 

left through the various columns
– Step 3: Write down difference between the digits in the current 

column of digits, borrowing a 1 from the top number’s next 
column to the left if necessary

– Step 4: If there is no next column to the left, stop
• Otherwise, move to column to the left; go to Step 3

• The computing agent is a human being
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Algorithms (continued)

• Sequence of steps that describes each of these 
computational processes is called an algorithm

• Features of an algorithm:
– Consists of a finite number of instructions
– Each individual instruction is well defined
– Describes a process that eventually halts after 

arriving at a solution to a problem
– Solves a general class of problems
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Information Processing

• Information is also commonly referred to as data
• In carrying out the instructions of an algorithm,  

computing agent manipulates information
– Starts with input produces output

• The algorithms that describe information 
processing can also be represented as information
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The Structure of a Modern Computer 
System

• A modern computer system consists of hardware 
and software
– Hardware: physical devices required to execute 

algorithms 
– Software: set of these algorithms, represented as 

programs in particular programming languages
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Computer Hardware

• Computers can also communicate with the external 
world through various ports that connect them to 
networks and to other devices
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Computer Hardware (continued)

• Random access memory (RAM) is also called 
internal or primary

• External or secondary memory can be magnetic, 
semiconductor, or optical
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Computer Software

• A program stored in computer memory must be 
represented in binary digits, or machine code

• A loader takes a set of machine language 
instructions as input and loads them into the 
appropriate memory locations

• The most important example of system software
is a computer’s operating system
– Some important parts: file system, user interfaces

(terminal-based or GUIs)
• Applications include Web browsers, games, etc.
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Computer Software (continued)
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A Not-So-Brief History of
Computing Systems
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A Not-So-Brief History of
Computing Systems (continued)

13
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Before Electronic Digital Computers

• “Algorithm” comes from Muhammad ibn Musa Al-
Khawarizmi, a Persian mathematician

• Euclid developed an algorithm for computing the 
greatest common divisor of two numbers

• The abacus also appeared in ancient times
• Blaise Pascal (1623–1662): built one of the first 

mechanical devices to automate addition
• Joseph Jacquard (1752–1834): designed and 

constructed a machine that automated weaving
• Charles Babbage (1792–1871): conceived Analytical 

Engine
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Before Electronic Digital Computers 
(continued)

• Herman Hollerith (1860–1929): developed a 
machine that automated data processing for the 
U.S. Census
– One of the founders of company that became IBM

• George Boole (1815–1864): developed Boolean 
logic

• Alan Turing (1912–1954): explored the theoretical 
foundations and limits of algorithms and 
computation
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The First Electronic Digital Computers 
(1940–1950)

• Late 1930s: Claude Shannon wrote paper titled “A 
Symbolic Analysis of Relay and Switching Circuits”

• 1940s:
– Mark I (electromechanical)
– ENIAC (Electronic Numerical Integrator and 

Calculator)
– ABC (Atanasoff-Berry Computer)
– Colossus by a group working under Alan Turing
– John von Neumann: first memory-stored programs

• Mainframe computers consisted of vacuum tubes, 
wires, and plugs, and filled entire rooms
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The First Programming Languages 
(1950–1965)

• The first assembly languages had operations like 
ADD and OUTPUT

• Programmers entered mnemonic codes for operations 
at keypunch machine

• Card reader—translated holes in cards to patterns in 
computer’s memory

• Assembler—translated application programs in 
memory to machine code

• High-level programming languages: FORTRAN, LISP, 
COBOL 
– common feature: abstraction
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Integrated Circuits, Interaction, and 
Timesharing (1965–1975)

• Late 1950s: vacuum tube gave way to transistor
– Transistor is solid-state device

• Early 1960s: integrated circuit enabled smaller, 
faster, less expensive hardware components
– Moore’s Law: processing speed and storage 

capacity of HW will increase and cost will decrease 
by approximately a factor of 2 every 18 months

• Minicomputers appeared
• Processing evolved from batch processing 

time-sharing concurrent



Fundamentals of Python: First Programs 19

Personal Computing and Networks 
(1975–1990)

• Late 1960s: Douglas Engelbart
– First pointing device (mouse) and software to 

represent windows, icons, and pull-down menus on a 
bit-mapped display screen

– Member of team that developed Alto (Xerox PARC)
• 1975: Altair, first mass-produced personal computer

– With Intel’s 8080 processor, first microcomputer chip
• Early 1980s: Gates and Allen build MS-DOS
• Bob Metcalfe created Ethernet, used in LANs
• ARPANET grew into what we call Internet
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Consultation, Communication, and 
Ubiquitous Computing (1990–Present)
• Optical storage media developed for mass 

storage
• Virtual reality: capacity to create lifelike 3-D 

animations of whole-environments
• Computing is becoming ubiquitous, yet less visible
• Berners-Lee at CERN created WWW

– Based on concepts of hypermedia
– HTTP: Hypertext Transfer Protocol
– HTML: Hypertext Markup Language



Fundamentals of Python: First Programs 21

Getting Started with Python 
Programming

• Early 1990s: Guido van Rossum
– invented the Python programming language

• Python is a high-level, general-purpose 
programming language for solving problems on 
modern computer systems

• Useful resources at www.python.org 
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Running Code in the Interactive Shell

• Python is an interpreted language
• Simple Python expressions and statements can be 

run in the shell
– Easiest way to open a Python shell is to launch the 

IDLE
– To quit, select the window’s close box or press 

Control+D
– Shell is useful for:

• Experimenting with short expressions or statements
• Consulting the documentation
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Running Code in the Interactive Shell 
(continued)
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Input, Processing, and Output

• Programs usually accept inputs from a source, process 
them, and output results to a destination
– In terminal-based interactive programs, these are the 

keyboard and terminal display
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Input, Processing, and Output (cont’d)
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Editing, Saving, and Running a Script

• Select New Window from the File Menu
• Type your Python Source Code.
• Use the File Menu, then Save using the .py

extension
• We can then run Python program files or scripts 

within IDLE
– Run Menu, then Run Module or press F5

(Windows) 
• Running a script from IDLE allows you to construct 

some complex programs, test them, and save them 
in program libraries to reuse or share with others
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Editing, Saving, and Running a Script 
(continued)
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Editing, Saving, and Running a Script 
(continued)

myprogram.py
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Behind the Scenes:
How Python Works
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Detecting and Correcting Syntax 
Errors

• Programmers inevitably make typographical errors 
when editing programs, called syntax errors
– The Python interpreter will usually detect these

• Syntax: rules for forming sentences in a language
• When Python encounters a syntax error in a 

program, it halts execution with an error message
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Program Comments and Docstrings

• Docstring example:

• End-of-line comment example:
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Detecting and Correcting Syntax 
Errors (continued)



Fundamentals of Python: First Programs 33

Summary

• Fundamental ideas of computer science
– The algorithm
– Information processing

• Real computing agents can be constructed out of 
hardware devices
– CPU, memory, and input and output devices

• Some real computers are specialized for a small 
set of tasks, whereas a desktop or laptop computer 
is a general-purpose problem-solving machine
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Summary (continued)

• Software provides the means whereby different 
algorithms can be run on a general-purpose 
hardware device
– Written in programming languages

• Languages such as Python are high-level
• Interpreter translates a Python program to a lower-

level form that can be executed on a real computer
• Python shell provides a command prompt for 

evaluating and viewing the results of Python 
expressions and statements
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Summary (continued)

• IDLE is an integrated development environment 
that allows the programmer to save programs in 
files and load them into a shell for testing

• Python scripts are programs that are saved in files 
and run from a terminal command prompt

• When a Python program is executed, it is 
translated into byte code
– Sent to PVM for further interpretation and execution

• Syntax: set of rules for forming correct expressions 
and statements in a programming language
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