s

QTN QN.

st Programs ssss /4//

Objectives

After completing this chapter, you will be able to:
» Describe the basic features of an algorithm

« Explain how hardware and software collaborate In
a computer’s architecture

« Give a brief history of computing
« Compose and run a simple Python program

Fundamentals of Python: First Programs

Fundamentals of Computer Science:
Algorithms and Information Processing

 Computer science focuses on a broad set of
Interrelated ideas

— Two of the most basic ones are:
e Algorithms
* Information processing

Fundamentals of Python: First Programs 3

Algorithms

« Steps for subtracting two numbers:

— Step 1. Write down the numbers, with larger number above
smaller one, digits column-aligned from right

— Step 2: Start with rightmost column of digits and work your way
left through the various columns

— Step 3: Write down difference between the digits in the current
column of digits, borrowing a 1 from the top number’s next
column to the left if necessary

— Step 4: If there is no next column to the left, stop
* Otherwise, move to column to the left; go to Step 3

« The computing agent is a human being

Fundamentals of Python: First Programs 4

Algorithms (continued)

e Seguence of steps that describes each of these
computational processes is called an algorithm
e Features of an algorithm:
— Consists of a finite number of instructions
— Each individual instruction is well defined

— Describes a process that eventually halts after
arriving at a solution to a problem

— Solves a general class of problems

Fundamentals of Python: First Programs

Information Processing

* Information is also commonly referred to as data

* |n carrying out the instructions of an algorithm,
computing agent manipulates information

— Starts with input = produces output

* The algorithms that describe information
processing can also be represented as information

Fundamentals of Python: First Programs

The Structure of a Modern Computer
System

A modern computer system consists of hardware
and software

— Hardware: physical devices required to execute
algorithms

— Software: set of these algorithms, represented as
programs in particular programming languages

Fundamentals of Python: First Programs

Computer Hardware

Input device Output device

CPU

Memory

[FIGURE 1.1] Hardware components of a modern computer system

 Computers can also communicate with the external
world through various ports that connect them to
networks and to other devices

Fundamentals of Python: First Programs

Computer Hardware (continued)

ce1l 7 |1]1/0of1|1|1|1]|0of1|1|1|2|1|1]|0|1
Cell 6 [1|0|1|1|0f1|1/1/1|1|1|0|1|1|1|1
cell 5 |1/1|1/1/1/21/1/1/of1/1f1/1|0|1]1
Cell 4 |(1(0|1|1|1f{0f1|1/1|1|1|1/0f1|1]|1
Cell 3 (|1f1|1|/0|1f1|1/1/1|0f1|1|1|1|1|1
Cell 2 0/0/1(1/1/1{0{1|1|1(01|1]1|0]|1
Cell 1 |1(1|1/0f1|1f21f{1|1|1|1|1f{1|0|1]|1
Cell O |1(1|1/0|1|1f(O0f1|1|1|1|1f1|1|1]|0O
[FIGURE 1.2] A model of computer memory

« Random access memory (RAM) is also called
Internal or primary

 External or secondary memory can be magnetic,
semiconductor, or optical

Fundamentals of Python: First Programs

Computer Software

e A program stored in computer memory must be
represented in binary digits, or machine code

A loader takes a set of machine language
Instructions as input and loads them into the
appropriate memory locations

 The most important example of system software
IS a computer’'s operating system

— Some important parts: file system, user interfaces
(terminal-based or GUISs)

 Applications include Web browsers, games, etc.

Fundamentals of Python: First Programs 10

Computer Software (continued)

Syntax error messages
Text editor Translator

Create high-level
language program

Run-time | Other error messages
system

User inputs

Program
outputs

[FIGURE 1.3] Software used in the coding process

Fundamentals of Python: First Programs

A Not-So-Brief History of
Computing Systems

Approximate Dates | Major Developments
Before 1800 * Mathematicians develop and use algorithms

* Abacus used as a calculating aide

e First mechanical calculators built by Pascal and Leibniz
1800-1930 ¢ Jacquard’s loom

e Babbage’s Analytical Engine

* Boole’s system of logic

* Hollerith’s punch card machine
1930s e Turing publishes results on computability

e Shannon’s theory of information and digital switching
1940s e First electronic digital computers
1950s * First symbolic programming languages

e Transistors make computers smaller, faster, more durable,

less expensive
* Emergence of data-processing applications

[FIGURE 1.4] Summary of major developments in the history of computing

Fundamentals of Python: First Programs

12

A Not-So-Brief History of
Computing Systems (continued)

1960-1975

« 2 @ @

Integrated circuits accelerate the miniaturization of hardware
First minicomputers

Time-sharing operating systems

Interactive user interfaces with keyboards and monitors
Proliferation of high-level programming languages
Emergence of a software industry and the academic study of
computer science and computer engineering

1975-1990

L]

First microcomputers and mass-produced personal computers
Graphical user interfaces become widespread
Networks and the Internet

1990s

Optical storage for multimedia applications, images, sound,
and video

World Wide Web and e-commerce

Laptop computers

2000-present

Embedded computing

Wireless computing

Computers used in enormous variety of cars, household
appliances, and industrial equipment

[FIGURE 1.1’;] Summary of major developments in the history of computing

Fundamentals of Python: First Programs

13

Before Electronic Digital Computers

“Algorithm” comes from Muhammad ibn Musa Al-
Khawarizmi, a Persian mathematician

Euclid developed an algorithm for computing the
greatest common divisor of two numbers

The abacus also appeared in ancient times

Blaise Pascal (1623—-1662): built one of the first
mechanical devices to automate addition

Joseph Jacquard (1752—-1834): designed and
constructed a machine that automated weaving

Charles Babbage (1792-1871): conceived Analytical
Engine

Fundamentals of Python: First Programs

Before Electronic Digital Computers
(continued)

 Herman Hollerith (1860-1929). developed a
machine that automated data processing for the
U.S. Census

— One of the founders of company that became IBM
e George Boole (1815-1864): developed Boolean
logic
e Alan Turing (1912-1954): explored the theoretical

foundations and limits of algorithms and
computation

Fundamentals of Python: First Programs 15

The First Electronic Digital Computers
(1940-1950)

e Late 1930s: Claude Shannon wrote paper titled “A
Symbolic Analysis of Relay and Switching Circuits”
e 1940s:
— Mark I (electromechanical)

— ENIAC (Electronic Numerical Integrator and
Calculator)

— ABC (Atanasoff-Berry Computer)
— Colossus by a group working under Alan Turing
— John von Neumann: first memory-stored programs

 Mainframe computers consisted of vacuum tubes,
wires, and plugs, and filled entire rooms

Fundamentals of Python: First Programs 16

The First Programming Languages
(1950-1965)

* The first assembly languages had operations like
ADD and OUTPUT

* Programmers entered mnemonic codes for operations
at keypunch machine

 Card reader—translated holes in cards to patterns in
computer's memory

 Assembler—translated application programs in
memory to machine code

e High-level programming languages: FORTRAN, LISP,
COBOL

— common feature: abstraction

Fundamentals of Python: First Programs 17

Integrated Circuits, Interaction, and
Timesharing (1965-1975)

e Late 1950s: vacuum tube gave way to transistor
— Transistor is solid-state device

o Early 1960s: integrated circuit enabled smaller,
faster, less expensive hardware components

— Moore’s Law: processing speed and storage
capacity of HW will increase and cost will decrease
by approximately a factor of 2 every 18 months

Minicomputers appeared

Processing evolved from batch processing =2
time-sharing = concurrent

Fundamentals of Python: First Programs 18

Personal Computing and Networks
(1975-1990)

o Late 1960s: Douglas Engelbart

— First pointing device (mouse) and software to
represent windows, icons, and pull-down menus on a
bit-mapped display screen

— Member of team that developed Alto (Xerox PARC)

e 1975: Altair, first mass-produced personal computer
— With Intel’s 8080 processor, first microcomputer chip

e Early 1980s: Gates and Allen build MS-DOS
 Bob Metcalfe created Ethernet, used in LANS
« ARPANET grew into what we call Internet

Fundamentals of Python: First Programs 19

Consultation, Communication, and
Ubiquitous Computing (1990—Present)

e Optical storage media developed for mass
storage

* Virtual reality: capacity to create lifelike 3-D
animations of whole-environments

e Computing is becoming ubiquitous, yet less visible

 Berners-Lee at CERN created WWW
— Based on concepts of hypermedia
— HTTP: Hypertext Transfer Protocol
— HTML: Hypertext Markup Language

Fundamentals of Python: First Programs 20

Getting Started with Python
Programming

e Early 1990s: Guido van Rossum
— Invented the Python programming language

 Python is a high-level, general-purpose
programming language for solving problems on
modern computer systems

« Useful resources at www.python.org

Fundamentals of Python: First Programs 21

Running Code In the Interactive Shell

 Python is an interpreted language
o Simple Python expressions and statements can be
run in the shell

— Easiest way to open a Python shell is to launch the
IDLE

— To quit, select the window’s close box or press
Control+D

— Shell is useful for:
e Experimenting with short expressions or statements
e Consulting the documentation

Fundamentals of Python: First Programs 22

Running Code In the Interactive Shell
(continued)

o N N Python Shell

Python 3.1.2 (r312:79360M, Mar 24 2010, 01:33:18)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type "copyright”, "credits" or "license()" for more information.
=2 |

Ln: 4(Col: 4| .
[FIGURE 1.6] Python shell window

Fundamentals of Python: First Programs 23

Input, Processing, and Output

* Programs usually accept inputs from a source, process
them, and output results to a destination

— In terminal-based interactive programs, these are the
keyboard and terminal display

print(<expression>)

>>> print('Hi there')
Hi there

print (<expression>, .. , <expression>)

print(<expression>, end="")

Fundamentals of Python: First Programs 24

Input, Processing, and Output (cont’d)

>>> name = input("Enter your name: ")
Enter your name: Ken Lambert

>>> name

'Ken Lambert'

>>> print(name)

Ken Lambert

>>>

<variable lidentifier> = input(<a string prompt>)

>>> name
'Ken Lambert'

>>> first = int(input("Enter the first number: "))
Enter the first number: 23

>>> gsecond = int(input("Enter the second number: "))
Enter the second number: 44

>>> print("The sum is", first + second)

The sum is 67

>>>

Fundamentals of Python: First Programs 25

Editing, Saving, and Running a Script

e Select New Window from the File Menu

* Type your Python Source Code.
 Use the File Menu, then Save using the . py
extension

 We can then run Python program files or scripts
within IDLE

— Run Menu, then Run Module or press F5
(Windows)

e Running a script from IDLE allows you to construct
some complex programs, test them, and save them
In program libraries to reuse or share with others

Fundamentals of Python: First Programs 26

Editing, Saving, and Running a Script

(continued)

M M myprogram.py - /Users/lambertk/myprogram.py
width = int(input("Enter the width: "))

height = int(input("Enter the height: "))

area = width * height

print("The area is", area,| "square units")

[FIGURE 1.7] Python script in an IDLE window Ln: 4|Col: 26|

Fundamentals of Python: First Programs

27

Editing, Saving, and Running a Script

(continued)

a6 Python Shell
> == == == RESTART ==== ==
s>

Enter the width: 33
Enter the height: 22

The area is 726 sqguare units.
>

B

¥ A

ki

[FIGU RE 1.8] Interaction with a script in a shell window

Fundamentals of Python: First Programs

Ln: 8|Col: 4|

28

Behind the Scenes:
How Python Works

Python code Syntax Checker Syntax error messages

and Translator

Byte code

User inputs Python Virtual | Other error messages
Machine (PVM)

Program
outputs

[FIGURE 1.9] Steps in interpreting a Python program

Fundamentals of Python: First Programs

29

Detecting and Correcting Syntax
Errors

 Programmers inevitably make typographical errors
when editing programs, called syntax errors

— The Python interpreter will usually detect these
o Syntax: rules for forming sentences in a language

 When Python encounters a syntax error in a
program, it halts execution with an error message

Fundamentals of Python: First Programs

30

Program Comments and Docstrings

e Docstring example:

Program: circle.py
Author: EKen Lambert
Last date modified: 2/10/11

The purpose of this program is to compute the area of a circle.
The input is an integer or floating-point number representing the
radius of the circle. The output is a floating-point number
labeled the area of the circle.

 End-of-line comment example:

>>> RATE = 0.85 # Conversion rate for Canadian to US dollars

Fundamentals of Python: First Programs

31

Detecting and Correcting Syntax
Errors (continued)

>>> length = int(input("Enter the length: "))
Enter the length: 44

>>> print(lenth)
Traceback (most recent call last):

File "<pyshell#l>", line 1, in <module>
NameError: name 'lenth' is not defined

>>> print length
File "<pyshell#l>", line 1
print length

SyntaxXError: unexpected indent

>>> 3 +
3 +
SyntaxError: invalid syntax

Fundamentals of Python: First Programs

32

Summary

 Fundamental ideas of computer science
— The algorithm
— Information processing

 Real computing agents can be constructed out of
hardware devices

— CPU, memory, and input and output devices

e Some real computers are specialized for a small
set of tasks, whereas a desktop or laptop computer
IS a general-purpose problem-solving machine

Fundamentals of Python: First Programs 33

Summary (continued)

o Software provides the means whereby different
algorithms can be run on a general-purpose
hardware device

— Written in programming languages
 Languages such as Python are high-level

* Interpreter translates a Python program to a lower-
level form that can be executed on a real computer

e Python shell provides a command prompt for
evaluating and viewing the results of Python
expressions and statements

Fundamentals of Python: First Programs 34

Summary (continued)

 IDLE is an integrated development environment
that allows the programmer to save programs in
files and load them into a shell for testing

e Python scripts are programs that are saved in files
and run from a terminal command prompt

 When a Python program is executed, it is
translated into byte code

— Sent to PVM for further interpretation and execution

e Syntax: set of rules for forming correct expressions
and statements in a programming language

Fundamentals of Python: First Programs 35

	Fundamentals of Python:�First Programs
	Objectives
	Fundamentals of Computer Science: Algorithms and Information Processing
	Algorithms
	Algorithms (continued)
	Information Processing
	The Structure of a Modern Computer System
	Computer Hardware
	Computer Hardware (continued)
	Computer Software
	Computer Software (continued)
	A Not-So-Brief History of�Computing Systems
	Before Electronic Digital Computers
	Before Electronic Digital Computers (continued)
	The First Electronic Digital Computers (1940–1950)
	The First Programming Languages (1950–1965)
	Integrated Circuits, Interaction, and Timesharing (1965–1975)
	Personal Computing and Networks (1975–1990)
	Consultation, Communication, and Ubiquitous Computing (1990–Present)
	Getting Started with Python Programming
	Running Code in the Interactive Shell
	Running Code in the Interactive Shell (continued)
	Input, Processing, and Output
	Input, Processing, and Output (cont’d)
	Editing, Saving, and Running a Script
	Editing, Saving, and Running a Script (continued)
	Editing, Saving, and Running a Script (continued)
	Behind the Scenes:�How Python Works
	Detecting and Correcting Syntax Errors
	Detecting and Correcting Syntax Errors (continued)
	Summary
	Summary (continued)
	Summary (continued)

