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Objectives

After completing this chapter, you will be able to:
» Describe the basic features of an algorithm

« Explain how hardware and software collaborate In
a computer’s architecture

« Give a brief history of computing
« Compose and run a simple Python program
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Fundamentals of Computer Science:
Algorithms and Information Processing

 Computer science focuses on a broad set of
Interrelated ideas

— Two of the most basic ones are:
e Algorithms
* Information processing
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Algorithms

« Steps for subtracting two numbers:

— Step 1. Write down the numbers, with larger number above
smaller one, digits column-aligned from right

— Step 2: Start with rightmost column of digits and work your way
left through the various columns

— Step 3: Write down difference between the digits in the current
column of digits, borrowing a 1 from the top number’s next
column to the left if necessary

— Step 4: If there is no next column to the left, stop
* Otherwise, move to column to the left; go to Step 3

« The computing agent is a human being
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Algorithms (continued)

e Seguence of steps that describes each of these
computational processes is called an algorithm
e Features of an algorithm:
— Consists of a finite number of instructions
— Each individual instruction is well defined

— Describes a process that eventually halts after
arriving at a solution to a problem

— Solves a general class of problems
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Information Processing

* Information is also commonly referred to as data

* |n carrying out the instructions of an algorithm,
computing agent manipulates information

— Starts with input = produces output

* The algorithms that describe information
processing can also be represented as information
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The Structure of a Modern Computer
System

A modern computer system consists of hardware
and software

— Hardware: physical devices required to execute
algorithms

— Software: set of these algorithms, represented as
programs in particular programming languages
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Computer Hardware

Input device Output device

CPU

Memory

[FIGURE 1.1] Hardware components of a modern computer system

 Computers can also communicate with the external
world through various ports that connect them to
networks and to other devices
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Computer Hardware (continued)

ce1l 7 |1]1/0of1|1|1|1]|0of1|1|1|2|1|1]|0|1
Cell 6 [1|0|1|1|0f1|1/1/1|1|1|0|1|1|1|1
cell 5 |1/1|1/1/1/21/1/1/of1/1f1/1|0|1]1
Cell 4 |(1(0|1|1|1f{0f1|1/1|1|1|1/0f1|1]|1
Cell 3 (|1f1|1|/0|1f1|1/1/1|0f1|1|1|1|1|1
Cell 2 0/0/1(1/1/1{0{1|1|1(01|1]1|0]|1
Cell 1 |1(1|1/0f1|1f21f{1|1|1|1|1f{1|0|1]|1
Cell O |1(1|1/0|1|1f(O0f1|1|1|1|1f1|1|1]|0O
[FIGURE 1.2] A model of computer memory

« Random access memory (RAM) is also called
Internal or primary

 External or secondary memory can be magnetic,
semiconductor, or optical
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Computer Software

e A program stored in computer memory must be
represented in binary digits, or machine code

A loader takes a set of machine language
Instructions as input and loads them into the
appropriate memory locations

 The most important example of system software
IS a computer’'s operating system

— Some important parts: file system, user interfaces
(terminal-based or GUISs)

 Applications include Web browsers, games, etc.
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Computer Software (continued)

Syntax error messages
Text editor Translator

Create high-level
language program

Run-time | Other error messages
system

User inputs

Program
outputs

[FIGURE 1.3] Software used in the coding process
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A Not-So-Brief History of
Computing Systems

Approximate Dates | Major Developments
Before 1800 * Mathematicians develop and use algorithms

* Abacus used as a calculating aide

e First mechanical calculators built by Pascal and Leibniz
1800-1930 ¢ Jacquard’s loom

e Babbage’s Analytical Engine

* Boole’s system of logic

* Hollerith’s punch card machine
1930s e Turing publishes results on computability

e Shannon’s theory of information and digital switching
1940s e First electronic digital computers
1950s * First symbolic programming languages

e Transistors make computers smaller, faster, more durable,

less expensive
* Emergence of data-processing applications

[FIGURE 1.4] Summary of major developments in the history of computing
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A Not-So-Brief History of
Computing Systems (continued)

1960-1975

« 2 @ @

Integrated circuits accelerate the miniaturization of hardware
First minicomputers

Time-sharing operating systems

Interactive user interfaces with keyboards and monitors
Proliferation of high-level programming languages
Emergence of a software industry and the academic study of
computer science and computer engineering

1975-1990

L ]

First microcomputers and mass-produced personal computers
Graphical user interfaces become widespread
Networks and the Internet

1990s

Optical storage for multimedia applications, images, sound,
and video

World Wide Web and e-commerce

Laptop computers

2000-present

Embedded computing

Wireless computing

Computers used in enormous variety of cars, household
appliances, and industrial equipment

[FIGURE 1.1’;] Summary of major developments in the history of computing
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Before Electronic Digital Computers

“Algorithm” comes from Muhammad ibn Musa Al-
Khawarizmi, a Persian mathematician

Euclid developed an algorithm for computing the
greatest common divisor of two numbers

The abacus also appeared in ancient times

Blaise Pascal (1623—-1662): built one of the first
mechanical devices to automate addition

Joseph Jacquard (1752—-1834): designed and
constructed a machine that automated weaving

Charles Babbage (1792-1871): conceived Analytical
Engine
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Before Electronic Digital Computers
(continued)

 Herman Hollerith (1860-1929). developed a
machine that automated data processing for the
U.S. Census

— One of the founders of company that became IBM
e George Boole (1815-1864): developed Boolean
logic
e Alan Turing (1912-1954): explored the theoretical

foundations and limits of algorithms and
computation
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The First Electronic Digital Computers
(1940-1950)

e Late 1930s: Claude Shannon wrote paper titled “A
Symbolic Analysis of Relay and Switching Circuits”
e 1940s:
— Mark I (electromechanical)

— ENIAC (Electronic Numerical Integrator and
Calculator)

— ABC (Atanasoff-Berry Computer)
— Colossus by a group working under Alan Turing
— John von Neumann: first memory-stored programs

 Mainframe computers consisted of vacuum tubes,
wires, and plugs, and filled entire rooms

Fundamentals of Python: First Programs 16



The First Programming Languages
(1950-1965)

* The first assembly languages had operations like
ADD and OUTPUT

* Programmers entered mnemonic codes for operations
at keypunch machine

 Card reader—translated holes in cards to patterns in
computer's memory

 Assembler—translated application programs in
memory to machine code

e High-level programming languages: FORTRAN, LISP,
COBOL

— common feature: abstraction
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Integrated Circuits, Interaction, and
Timesharing (1965-1975)

e Late 1950s: vacuum tube gave way to transistor
— Transistor is solid-state device

o Early 1960s: integrated circuit enabled smaller,
faster, less expensive hardware components

— Moore’s Law: processing speed and storage
capacity of HW will increase and cost will decrease
by approximately a factor of 2 every 18 months

Minicomputers appeared

Processing evolved from batch processing =2
time-sharing = concurrent
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Personal Computing and Networks
(1975-1990)

o Late 1960s: Douglas Engelbart

— First pointing device (mouse) and software to
represent windows, icons, and pull-down menus on a
bit-mapped display screen

— Member of team that developed Alto (Xerox PARC)

e 1975: Altair, first mass-produced personal computer
— With Intel’s 8080 processor, first microcomputer chip

e Early 1980s: Gates and Allen build MS-DOS
 Bob Metcalfe created Ethernet, used in LANS
« ARPANET grew into what we call Internet
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Consultation, Communication, and
Ubiquitous Computing (1990—Present)

e Optical storage media developed for mass
storage

* Virtual reality: capacity to create lifelike 3-D
animations of whole-environments

e Computing is becoming ubiquitous, yet less visible

 Berners-Lee at CERN created WWW
— Based on concepts of hypermedia
— HTTP: Hypertext Transfer Protocol
— HTML: Hypertext Markup Language
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Getting Started with Python
Programming

e Early 1990s: Guido van Rossum
— Invented the Python programming language

 Python is a high-level, general-purpose
programming language for solving problems on
modern computer systems

« Useful resources at www.python.org
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Running Code In the Interactive Shell

 Python is an interpreted language
o Simple Python expressions and statements can be
run in the shell

— Easiest way to open a Python shell is to launch the
IDLE

— To quit, select the window’s close box or press
Control+D

— Shell is useful for:
e Experimenting with short expressions or statements
e Consulting the documentation
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Running Code In the Interactive Shell
(continued)

o N N Python Shell

Python 3.1.2 (r312:79360M, Mar 24 2010, 01:33:18)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type "copyright”, "credits" or "license()" for more information.
=2 |

Ln: 4(Col: 4| .
[FIGURE 1.6] Python shell window
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Input, Processing, and Output

* Programs usually accept inputs from a source, process
them, and output results to a destination

— In terminal-based interactive programs, these are the
keyboard and terminal display

print(<expression>)

>>> print('Hi there')
Hi there

print (<expression>, .. , <expression>)

print(<expression>, end="")
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Input, Processing, and Output (cont’d)

>>> name = input("Enter your name: ")
Enter your name: Ken Lambert

>>> name

'Ken Lambert'

>>> print(name)

Ken Lambert

>>>

<variable lidentifier> = input(<a string prompt>)

>>> name
'Ken Lambert'

>>> first = int(input("Enter the first number: "))
Enter the first number: 23

>>> gsecond = int(input("Enter the second number: "))
Enter the second number: 44

>>> print("The sum is", first + second)

The sum is 67

>>>
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Editing, Saving, and Running a Script

e Select New Window from the File Menu

* Type your Python Source Code.
 Use the File Menu, then Save using the . py
extension

 We can then run Python program files or scripts
within IDLE

— Run Menu, then Run Module or press F5
(Windows)

e Running a script from IDLE allows you to construct
some complex programs, test them, and save them
In program libraries to reuse or share with others
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Editing, Saving, and Running a Script

(continued)

M M myprogram.py - /Users/lambertk/myprogram.py
width = int(input("Enter the width: "))

height = int(input("Enter the height: "))

area = width * height

print("The area is", area,| "square units")

[FIGURE 1.7] Python script in an IDLE window Ln: 4|Col: 26|
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Editing, Saving, and Running a Script

(continued)

a6 Python Shell
> == == == RESTART ==== ==
s>

Enter the width: 33
Enter the height: 22

The area is 726 sqguare units.
>

B

¥ A

ki

[FIGU RE 1.8] Interaction with a script in a shell window

Fundamentals of Python: First Programs

Ln: 8|Col: 4|

28



Behind the Scenes:
How Python Works

Python code Syntax Checker Syntax error messages

and Translator

Byte code

User inputs Python Virtual | Other error messages
Machine (PVM)

Program
outputs

[FIGURE 1.9] Steps in interpreting a Python program
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Detecting and Correcting Syntax
Errors

 Programmers inevitably make typographical errors
when editing programs, called syntax errors

— The Python interpreter will usually detect these
o Syntax: rules for forming sentences in a language

 When Python encounters a syntax error in a
program, it halts execution with an error message
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Program Comments and Docstrings

e Docstring example:

Program: circle.py
Author: EKen Lambert
Last date modified: 2/10/11

The purpose of this program is to compute the area of a circle.
The input is an integer or floating-point number representing the
radius of the circle. The output is a floating-point number
labeled the area of the circle.

 End-of-line comment example:

>>> RATE = 0.85 # Conversion rate for Canadian to US dollars
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Detecting and Correcting Syntax
Errors (continued)

>>> length = int(input("Enter the length: "))
Enter the length: 44

>>> print(lenth)
Traceback (most recent call last):

File "<pyshell#l>", line 1, in <module>
NameError: name 'lenth' is not defined

>>> print length
File "<pyshell#l>", line 1
print length

SyntaxXError: unexpected indent

>>> 3 +
3 +
SyntaxError: invalid syntax

Fundamentals of Python: First Programs
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Summary

 Fundamental ideas of computer science
— The algorithm
— Information processing

 Real computing agents can be constructed out of
hardware devices

— CPU, memory, and input and output devices

e Some real computers are specialized for a small
set of tasks, whereas a desktop or laptop computer
IS a general-purpose problem-solving machine
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Summary (continued)

o Software provides the means whereby different
algorithms can be run on a general-purpose
hardware device

— Written in programming languages
 Languages such as Python are high-level

* Interpreter translates a Python program to a lower-
level form that can be executed on a real computer

e Python shell provides a command prompt for
evaluating and viewing the results of Python
expressions and statements
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Summary (continued)

 IDLE is an integrated development environment
that allows the programmer to save programs in
files and load them into a shell for testing

e Python scripts are programs that are saved in files
and run from a terminal command prompt

 When a Python program is executed, it is
translated into byte code

— Sent to PVM for further interpretation and execution

e Syntax: set of rules for forming correct expressions
and statements in a programming language
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