Fundamentals of Python:
First Programs

Chapter 4: Strings
and Text Files

Objectives

After completing this chapter, you will be able to
* Access individual characters in a string

* Retrieve a substring from a string

« Search for a substring in a string

« Convert a string representation of a number from
one base to another base

Fundamentals of Python: First Programs

ODbjectives (continued)

« Use string methods to manipulate strings

* Open a text file for output and write strings or
numbers to the file

* Open a text file for input and read strings or
numbers from the file

« Use library functions to access and navigate a file
system

Fundamentals of Python: First Programs

Accessing Characters and Substrings
In Strings

In this section, we examine the internal structure of
a string more closely

You will learn how to extract portions of a string
called substrings

Fundamentals of Python: First Programs

The Structure of Strings

« An integer can’ t be factored into more primitive
parts

« A string is an immutable data structure
— Data structure: Consists of smaller pieces of data

>>> len("Hi there!") +)
9

>>> len("")

0

HHOUWEEEHE O

6 7 8

[FIGURE 4.1] Characters and their positions in a string

Fundamentals of Python: First Programs 5

The Subscript Operator

* The form of the subscript operator Is:

<a string>[<an integer expression>]

\ Index is usually in range [0,length of string — 1];

* Examples. can be negative

>>> name = "Alan Turing"
>>> name[0] # Examine the first character
VA
>>> name|[3] # Examine the fourth character
'n
>>> name|[len(name)] # Oops! An index error!
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: string index out of range
>>> name|len(name) - 1] # Examine the last character
g
>>> name[-1] # Shorthand for the last one
g

Fundamentals of Python: First Programs 6

The Subscript Operator (continued)

« Subscript operator is useful when you want to use
the positions as well as the characters in a string

— Use a count-controlled loop

>>> data = "Hi there!"
>>> for index in range(len(data)):
print(index, data[index])

-~

Yo =1 N e W e O
- D H O =5

W

>

Fundamentals of Python: First Programs

Slicing for Substrings

« Python’ s subscript operator can be used to obtain
a substring through a process called slicing

— Place a colon (:) in the subscript; an integer value
can appear on either side of the colon

>>> name = "myfile.txt"

>>> name[0:]
'myfile.txt'
>>> name[0:1]
'm"

>>> name[0:2]
'‘my "

>>> name| :len(name)]
'myfile.txt'

>>> name[-3:]

"txt'

Fundamentals of Python: First Programs

$# The entire string

The first character

The first two characters
The entire string

The last three characters

Testing for a Substring with the in
Operator

* When used with strings, the left operand of in is a

target substring and the right operand is the string
to be searched

— Returns True If target string is somewhere in search
string, or False otherwise

>>> fileList = ["myfile.txt", "myprogram.exe", "yourfile.txt"]
>>> for fileName in fileList:
if ".txt" in fileName:
print(fileName)

myfile.txt

yourfile.txt
>>>

Fundamentals of Python: First Programs 9

Data Encryption

* |tis easy to observe data crossing a network,
particularly in wireless networks

— Attacker may use sniffing software

« Data encryption can be used to protect
Information transmitted on networks
— Many protocols have secure versions (e.g., HTTPS)

— One or more keys are use to encrypt messages to
produce cipher text, and to decrypt cipher text back
to its original plain text form

— Examples: Caesar cipher, block cipher

Fundamentals of Python: First Programs 10

Data Encryption (continued)

« Caesar cipher replaces each character in plain
text with a character a given distance away

File: encrypt.py
Encrypts an input string of lowercase letters and prints
the result. The other input is the distance value.

plainText = input("Enter a one-word, lowercase message: ")
distance = int(input("Enter the distance value: "))
code = ""
for ch in plainText:

ordValue = ord(ch)

cipherValue = ordValue + distance

if cipherValue > ord('z"'):

ciphervValue = ord('a') + distance - \
(ord('z') - ordvValue + 1)

code += chr(cipherValue)

print(code)

Fundamentals of Python: First Programs

Data Encryption (continued)

« To decrypt, use inverse method

File: decrypt.py
Decrypts an input string of lowercase letters and prints
the result. The other input is the distance value.

code = input("Enter the coded text: ")
distance = int(input("Enter the distance value: "))
plainText = ''
for ch in code:
ordvValue = ord(ch)
ciphervValue = ordvValue - distance
if cipherValue < ord('a'):

ciphervalue = ord('z') - \
(distance - (ord('a') - ordvalue + 1))
plainText += chr(cipherValue)
print(plainText)

Fundamentals of Python: First Programs

Data Encryption (continued)

> python encrypt.py

Enter a one-word, lowercase message: invaders
Enter the distance value: 5

nsafijwx

> python decrypt.py

Enter the coded text: nsafijwx

Enter the distance value: 5

invaders

« Caesar cipher worked well in ancient times, but is
easy to break using modern computers

Fundamentals of Python: First Programs

13

Data Encryption (continued)

* Block cipher

— Uses plaintext character to compute two or more
encrypted characters

— Each encrypted character is computed using two or
more plaintext characters

— Uses an invertible matrix

Fundamentals of Python: First Programs

14

Strings and Number Systems

415 in
415 in
415 in
415 in

binary notation
octal notation
decimal notation
hexadecimal notation

110011111,
637,

415,

19F

« The digits used in each system are counted from O
to n - 1, where n is the system’s base

» To represent digits with values larger than 9,
systems such as base 16 use letters

— Example: A, represents the quantity 10,,, whereas
10,4 represents the quantity 16,

Fundamentals of Python: First Programs

15

The Positional System for
Representing Numbers

In positional notation, a digit has a positional
value, determined by raising the base to the power
specified by the position (baseposition)

Positional wvalues 100 10 1
Positions 2 1 0

[FIGURE 4.2] The first three positional values in the base 10 number system
415, =

4 * 102 + 1 * 101 + 5 * 10° =

4 *+ 100 + 1 * 10 + 5 * 1 =

400 + 10 + 5 = 415

16

Fundamentals of Python: First Programs

Converting Binary to Decimal

« Each digit or bit in binary number has positional
value that is power of 2

* We occasionally refer to a binary number as a
string of bits or a bit string

« To determine the integer quantity that a string of
bits represents:

1100111, =

1 * 264 1 % 254 0 % 2% 4+ 0 * 23 + 1 %22+ 1 %2 +1 % 20 =
1l *64 +1 * 32 +0* 16 + 0 * 8 + 1 * 4 + 1 * 2+ 1 * 1 =
64 + 32 + 4 + 2 + 1 = 103

Fundamentals of Python: First Programs

17

Converting Binary to Decimal
(continued)

File: binarytodecimal.py
Converts a string of bits to a decimal integer.

bstring = input("Enter a string of bits: ")
decimal 0
exponent = len(bstring) - 1
for digit in bstring:
decimal = decimal + int(digit) * 2 ** exponent
exponent = exponent - 1
print("The integer value is", decimal)

> python binarytodecimal.py
Enter a string of bits: 1111
The integer value is 15
> python binarytodecimal.py
Enter a string of bits: 101
The integer value is 5

Fundamentals of Python: First Programs

Converting Binary to Decimal (cont.)

File: decimaltobinary.py
Converts a decimal integer to a string of bits.

decimal = int(input("Enter a decimal integer: "))
if decimal == 0:
print (0)
else:
print("Quotient Remainder Binary")
bstring = ""
while decimal > 0:
remainder = decimal % 2
decimal = decimal // 2
bstring = str(remainder) + bstring
print ("%5d%8d%12s" % (decimal, remainder, bstring))
print("The binary representation is", bstring)

> python decimalToBinary.py
Enter a decimal integer: 34
Quotient Remainder Binary

17 0 0
8 1 10
4 0 010
2 0 0010
1 0 00010
0 1 100010

The binary representation is 100010

Fundamentals of Python: First Programs

Conversion Shortcuts

DECIMAL BINARY
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000

[TABLE 4.1] The numbers 0 through 8 in binary

* Thus, a quick way to compute the decimal value of
the number 11111, is 2°- 1, or 31,,

Fundamentals of Python: First Programs 20

Octal and Hexadecimal Numbers

« To convert from octal to binary, start by assuming
that each digit in the octal number represents three
digits in the corresponding binary number

Octal 437

AN

Binary 100011 111

[FIGURE 4.3] The conversion of octal to binary

* To convert binary to octal, you begin at the right
and factor the bits into groups of three bits each

Fundamentals of Python: First Programs 21

Octal and Hexadecimal Numbers
(continued)

« To convert from hex to binary, replace each hex
digit with the corresponding 4-bit binary number

Hexadecimal 43F

LN

Binary 0100 0011 1111

[FIGURE 4.4] The conversion of hexadecimal to hinary

« To convert from binary to hex, factor the bits into
groups of 4 and look up the corresponding hex
digits

Fundamentals of Python: First Programs

22

String Methods

« Python includes a set of string operations called
methods that make tasks like counting the words
In a single sentence easy

>>> sentence = input("Enter a sentence: ")
Enter a sentence: This sentence has no long words.
>>> listOfWords = sentence.split()
>>> print("There are", len(listOfWords), "words.")
There are 6 words.
>>> gum = 0
>>> for word in listOfWords:
sum += len(word)

>>> print("The average word length is", sum / len(listOfWords))

The average word length is 4.5
>>>

Fundamentals of Python: First Programs

String Methods (continued)

* A method behaves like a function, but has a slightly
different syntax

— A method is always called with a given data value
called an object

<an object>.<method name>(<argument-1>, .., <argqument-n>)

* Methods can expect arguments and return values

A method knows about the internal state of the
object with which it is called

 In Python, all data values are objects

Fundamentals of Python: First Programs 24

String Methods (continued)

STRING METHOD WHAT IT DOES

s.center (width) Returns a copy of s centered within the
given number of columns.

s.count (sub [, start [, end]]) Returns the number of non-overlapping
occurrences of substring sub in s. Optional
arguments start and end are interpreted as
in slice notation.

s.endswith(sub) Returns True if s ends with sub or False
otherwise.

s.find(sub [, start [, end]]) Returns the lowest index in s where
substring sub is found. Optional arguments
start and end are Interpreted as in slice
notation.

s.isalpha() Returns True if s contains only letters or
False otherwise.

s.isdigit() Returns True if s contains only digits or
False otherwise.

[TAELE ILE] Some useful string methods, with the code letter s used to refer to any string

Fundamentals of Python: First Programs

String Methods (continued)

STRING METHOD

s.join(sequence)

s.lower ()

s.replace(old, new [, count])

s.split([sep])

s.startswith(sub)

s.strip([aString])

s.upper()

WHAT IT DOES

Returns a string that is the concatenation of
the strings in the sequence. The separator
between elements is s.

Returns a copy of s converted to lowercase.

Returns a copy of s with all occurrences
of substring o1d replaced by new. If the
optional argument count is given, only the
first count occurrences are replaced.

Returns a list of the words in s, using sep as
the delimiter string. If sep is not specified,
any whitespace string is a separator.

Returns True if s starts with sub or False
otherwise.

Returns a copy of s with leading and trailing
whitespace (tabs, spaces, newlines) removed.
It astring 1s given, remove characters in
astring instead.

Returns a copy of s converted to uppercase.

[TABLE £|.2] Some useful string methods, with the code letter s used to refer to any string

Fundamentals of Python: First Programs

26

String Methods (continued)

>>> g = "Hi there!"
>>> len(s)

9

>>> s.center(11)

' Hi there!

>>> s.count('e')

2

>>> s.endswith("there!")
True

>>> g.startswith("Hi")
True

>>> s.find('the")

3

>>> s.isalpha()

False

>>> 'abc'.isalpha()
True

>>> "326".isdigit()
True

>>> words = s.split()
>>> words

['Hi', 'there!']
>>> "" _ jolin(words)
'Hithere!"

Fundamentals of Python: First Programs

>>> "

'Hi
>>>
'hi
>>>
'"HI
>>>
'"Ho

>>> "

'Hi
>>>

String Methods (continued)

".join(words)
there!'

s.lower()

there!l'

s.upper()

THERE! '
s.replace('i', '0")
therel'

Hi there! ".strip()
there!'

Fundamentals of Python: First Programs

28

String Methods (continued)

« Example: extracting a filename’ s extension

>>> "myfile.txt".split(".")
[' myfile', 'txt']

>>> "myfile.py".split(".")

['myfile', 'py']

>>> "myfile.html".split(".")
[' myfile', 'html']

>>>

 The subscript [-1] extracts the last element
— Can be used to write a general expression for

obtaining any filename’ s extension, as follows:

filename.split(".")[-1]

Fundamentals of Python: First Programs

29

Text Files

« A text file is software object that stores data on
permanent medium such as disk or CD

 When compared to keyboard input from human

user, the main advantages of taking input data from
a file are:

— The data set can be much larger

— The data can be input much more quickly and with
less chance of error

— The data can be used repeatedly with the same
program or with different programs

Fundamentals of Python: First Programs 30

Text Files and Their Format

« Using a text editor such as Notepad or TextEdit,
you can create, view, and save data in a text file

34.6 22.33 66.75
77.12 21.44 99.01

 All data output to or input from a text file must be
strings

Fundamentals of Python: First Programs 31

Writing Text to a File

« Data can be output to a text file using a file
object
* To open a file for output:

>>> f = open("myfile.txt", 'w')

— |If file does not exist, it Is created

— If it already exists, Python opens it; when data are
written to the file and the file is closed, any data
previously existing in the file are erased

>>> f.write("First line.\nSecond line.\n")

>>> f.close () +—Failure to close output file can result in data being lost

Fundamentals of Python: First Programs 32

Writing Numbers to a File

 The £ile method write expects a string as an
argument

— Other types of data must first be converted to strings
before being written to output file (e.qg., using str)

import random
f = open("integers.txt", 'w')
for count in range(500):
number = random.randint(1l, 500)
f.write(str(number) + "\n")
f.close()

Fundamentals of Python: First Programs 33

Reading Text from a File

* You open a file for input in a manner similar to
opening a file for output

>>> f = open("myfile.txt", 'r')

— If the path name is not accessible from the current
working directory, Python raises an error

* There are several ways to read data from a file
— Example: the read method

>>> text = f.read()

>>> text

'First line.\nSecond line.\n’
>>> print(text)

First line.

Second line.

Fundamentals of Python: First Programs

Reading Text from a File (continued)

« After input is finished, read returns an empty string

>>> f = open("myfile.txt", 'r')
>>> for line in f:
print(line)

First line.

Second line.

>>> f = open("myfile.txt", 'r')
>>> while True:
line = f.readline()

if line == "";
break
print(line)

First line.

Second line.

Fundamentals of Python: First Programs 35

Reading Numbers from a File

« Examples:

f = open("integers.txt", 'r')
sum = 0
for line in f£f:
line = line.strip()
number = int(line)
sum += number
print("The sum is", sum)

f = open("integers.txt", 'r')
sum = 0
for line in f:
wordlist = line.split()
for word in wordlist:
number = int(word)
sum += number
print("The sum is", sum)

Fundamentals of Python: First Programs

36

Reading Numbers from a File
(continued)

METHOD WHAT IT DOES

open(pathname, mode) Opens a file at the given pathname and returns a
file object. The mode can be 'r', 'w', 'rw', or
*a'. The last two values, '*rw* and *a*, mean
read/write and append, respectively.

f.close() Closes an output file. Not needed for input files.

f.write(aString) Outputs aString to a file.

f.read() Inputs the contents of a file and returns them as a
single string. Returns ' ' if the end of file is
reached.

f.readline() Inputs a line of text and returns it as a string,

including the newline. Returns ' * if the end of file
is reached.

[TABLE 4.3] Some £ile operations

Fundamentals of Python: First Programs

Accessing and Manipulating Files and
Directories on Disk

* When designing Python programs that interact with
files, it' s a good idea to include error recovery

* For example, before attempting to open a file for
Input, you should check to see If file exists

— Function os .path.exists supports this checking

« Example: To print all of the names of files in the
current working directory with a . py extension:

import os
currentDirectoryPath = os.getcwd()
listOfFileNames = os.listdir(currentDirectoryPath)
for name in listOfFileNames:
if ".py" in name:
print (name)

Fundamentals of Python: First Programs 38

Accessing and Manipulating Files and
Directories on Disk (continued)

os MODULE FUNCTION

chdir(path)
getcwd ()
listdir(path)

mkdir(path)
remove (path)

rename(old, new)

rmdir(path)

[TABLE 4.4] Some file system functions

WHAT IT DOES

Changes the current working directory to path.

Returns the path of the current working directory.

Returns a list of the names in directory
named path.

Creates a new directory named path and places it
in the current working directory.

Removes the file named path from the current
working directory.

Renames the file or directory named old to new.

Removes the directory named path from the
current working directory.

Fundamentals of Python: First Programs

39

Accessing and Manipulating Files and
Directories on Disk (continued)

os.path MODULE FUNCTION WHAT IT DOES

exists(path) Returns True if path exists and False otherwise.

isdir(path) Returns True if path names a directory and
False otherwise.

isfile(path) Returns True if path names a file and False
otherwise.

getsize(path) Returns the size of the object names by path
in bytes.

[TABLE 4.5] More file system functions

Fundamentals of Python: First Programs 40

Case Study: Text Analysis

* In 1949, Dr. Rudolf Flesch proposed a measure of
text readablility known as the Flesch Index
— Index Is based on the average number of syllables

per word and the average number of words per
sentence in a piece of text

— Scores usually range from 0 to 100, and indicate
readable prose for the following grade levels:

FLESCH INDEX GRADE LEVEL OF READABILITY
0-30 College

50-60 High School

90-100 Fourth Grade

Fundamentals of Python: First Programs 41

Case Study: Request

« Write a program that computes the Flesch index
and grade level for text stored in a text file

Fundamentals of Python: First Programs

42

Case Study: Analysis

Input is the name of a text file

* Outputs are the number of sentences, words, and
syllables in the file, as well as the file’ s Flesch
Index and grade-level equivalent
Word Any sequence of non-whitespace characters.
Sentence Any sequence of words ending in a period, ques-

tion mark, exclamation point, colon, or semicolon.

Syllable Any word of three characters or less; or any vowel
(a, e, 1, 0, u) or pair of consecutive vowels, except
for a final -es, -ed, or -e that is not -le.

[TABLE 4.6] Definitions of items used in the text-analysis program

Fundamentals of Python: First Programs

43

Case Study: Design

TASK

count the sentences
count the words
count the syllables

compute the Flesch Index

compute the grade level

WHAT IT DOES

Counts the number of sentences in text.
Counts the number of words in text.
Counts the number of syllables in text.

Computes the Flesch Index for the given
numbers of sentences, words, and syllables.

Computes the grade level equivalent for the
given numbers of sentences, words, and

syllables.

[TABLE 4.7] The tasks defined in the text analysis program

Fundamentals of Python: First Programs

44

Case Study: Implementation (Coding)

Take the inputs

fileName = input("Enter the file name: ")
inputFile = open(fileName, 'r')

text = inputFile.read()

Count the sentences

sentences = text.count('.') + text.count('?') + \
text.count(':') + text.count(';') + \
text.count('!")

Count the words
words = len(text.split())

Count the syllables
syllables = 0
for word in text.split():
for vowel in ['a', 'e', 'i', 'o', 'u'l:
syllables += word.count(vowel)

Fundamentals of Python: First Programs 45

Case Study: Implementation (Coding)
(continued)

for ending in ['es', 'ed', 'e']:
if word.endswith(ending):
syllables -= 1
if word.endswith('le'):
syllables += 1

Compute the Flesch Index and Grade Level
index = 206.835 - 1.015 * (words / sentences) - \
84.6 * (syllables / words)
level = round(0.39 * (words / sentences) + 11.8 * \
(syllables / words) - 15.59)

Output the results

print("The Flesch Index is", index)
print("The Grade Level Equivalent is", level)
print(sentences, "sentences")

print(words, "words")

print(syllables, "syllables")

Fundamentals of Python: First Programs 46

Case Study: Testing

 Bottom-up testing:
— Each task is coded and tested before it is integrated
Into the overall program

— After you have written code for one or two tasks, you
can test them in a short script, called a driver

Fundamentals of Python: First Programs 47

Summary

« A string Is a sequence of zero or more characters
— Immutable data structure

— [1 used to access a character at a given position
« Can also be used for slicing ([<start>:<end>])

« in operator Is used to detect the presence or
absence of a substring in a string

« Method: operation that is used with an object

* The string type includes many useful methods for
use with string objects

Fundamentals of Python: First Programs

48

Summary (continued)

* A text file is a software object that allows a program
to transfer data to and from permanent storage

« A file oObjectis used to open a connection to a
text file for input or output
— Some useful methods: read, write, readline

« for loop treats an input file as a sequence of lines

— On each pass through the loop, the loop’ s variable
IS bound to a line of text read from the file

Fundamentals of Python: First Programs 49

