# Fundamentals of Python: First Programs

Chapter 4: Number Systems

### Objectives

After completing this lesson, you will be able to

 Convert a string representation of a number from one base to another base

#### Problem

Convert 637<sub>8</sub> (Octal = base 8) to a decimal number (base 10)

### Today's Lesson "The How"

- Reading a "Technical Text"
- Determine the central ideas of the text, summarizing the complex concepts, processes, and/or information presented in the text by paraphrasing them in simpler but still accurate terms.
- Determine the meaning of symbols, key terms, and Python commands.

### Today's Lesson "The What"

- Number Systems: Converting hexadecimal, octal, binary, and decimal numbers
- Read Section 4.3 (Pages 129 135)

### Today's Lesson "The How Part 2"

- Start with private thinking time.
- We will use "Listen & Compare" Structured
   Discussion with your partner.
- Groups will share
  - What you learned including:
  - The positional system
  - Converting Binary to Decimal
  - Converting Decimal to Binary
  - Converting Hexadecimal & Octal to Binary using the shortcuts

#### Problem Part 2

Convert 637<sub>8</sub> (Octal = base 8) to a decimal number (base 10)

#### **Exit Ticket**

- Socrative.com
- Room number: LCHS607

Number Conversion.xlsx

## Strings and Number Systems

```
\begin{array}{lll} 415 \text{ in binary notation} & 110011111_2 \\ 415 \text{ in octal notation} & 637_8 \\ 415 \text{ in decimal notation} & 415_{10} \\ 415 \text{ in hexadecimal notation} & 19F_{16} \end{array}
```

- The digits used in each system are counted from 0 to n 1, where n is the system's base
- To represent digits with values larger than 9<sub>10</sub>, systems such as base 16 use letters
  - Example:  $A_{16}$  represents the quantity  $10_{10}$ , whereas  $10_{16}$  represents the quantity  $16_{10}$

## The Positional System for Representing Numbers

 In positional notation, a digit has a positional value, determined by raising the base to the power specified by the position (base<sup>position</sup>)

```
Positional values 100 10 1
Positions 2 1 0
```

[FIGURE 4.2] The first three positional values in the base 10 number system

```
415_{10} =
4 * 10^{2} + 1 * 10^{1} + 5 * 10^{0} =
4 * 100 + 1 * 10 + 5 * 1 =
400 + 10 + 5 = 415
```

## Converting Binary to Decimal

- Each digit or bit in binary number has positional value that is power of 2
- We occasionally refer to a binary number as a string of bits or a bit string
- To determine the integer quantity that a string of bits represents:

```
1100111_{2} =
1 * 2^{6} + 1 * 2^{5} + 0 * 2^{4} + 0 * 2^{3} + 1 * 2^{2} + 1 * 2^{1} + 1 * 2^{0} =
1 * 64 + 1 * 32 + 0 * 16 + 0 * 8 + 1 * 4 + 1 * 2 + 1 * 1 =
64 + 32 + 1 = 103
```

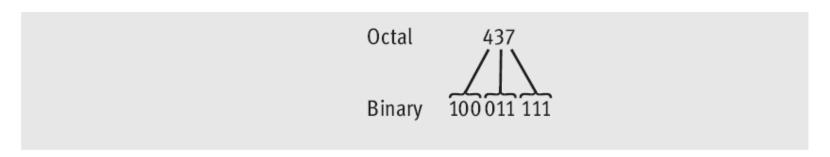
## Converting Binary to Decimal (continued)

```
.....
File: binarytodecimal.py
Converts a string of bits to a decimal integer.
bstring = input("Enter a string of bits: ")
decimal = 0
exponent = len(bstring) - 1
for digit in bstring:
    decimal = decimal + int(digit) * 2 ** exponent
    exponent = exponent - 1
print("The integer value is", decimal)
> python binarytodecimal.py
Enter a string of bits: 1111
The integer value is 15
> python binarytodecimal.py
Enter a string of bits: 101
The integer value is 5
```

## Converting Binary to Decimal (cont.)

```
File: decimaltobinary.py
Converts a decimal integer to a string of bits.
decimal = int(input("Enter a decimal integer: "))
if decimal == 0:
   print (0)
else:
    print("Quotient Remainder Binary")
   bstring = ""
   while decimal > 0:
        remainder = decimal % 2
        decimal = decimal // 2
       bstring = str(remainder) + bstring
       print("%5d%8d%12s" % (decimal, remainder, bstring))
   print("The binary representation is", bstring)
> python decimalToBinary.py
Enter a decimal integer: 34
Quotient Remainder Binary
   17
                     10
                  010
                  0010
    1
                  00010
                   100010
The binary representation is 100010
```

#### **Conversion Shortcuts**

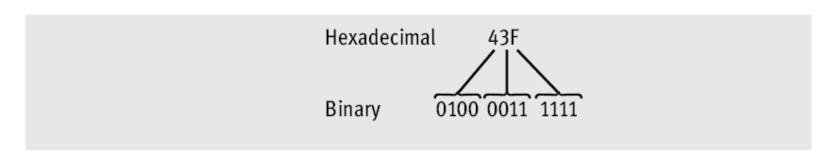

| DECIMAL | BINARY |  |
|---------|--------|--|
| 0       | 0      |  |
| 1       | 1      |  |
| 2       | 10     |  |
| 3       | 11     |  |
| 4       | 100    |  |
| 5       | 101    |  |
| 6       | 110    |  |
| 7       | 111    |  |
| 8       | 1000   |  |

[TABLE 4.1] The numbers 0 through 8 in binary

 Thus, a quick way to compute the decimal value of the number 11111<sub>2</sub> is 2<sup>5</sup> - 1, or 31<sub>10</sub>

#### Octal and Hexadecimal Numbers

 To convert from octal to binary, start by assuming that each digit in the octal number represents three digits in the corresponding binary number




[FIGURE 4.3] The conversion of octal to binary

 To convert binary to octal, you begin at the right and factor the bits into groups of three bits each

# Octal and Hexadecimal Numbers (continued)

 To convert from hex to binary, replace each hex digit with the corresponding 4-bit binary number



[FIGURE 4.4] The conversion of hexadecimal to binary

 To convert from binary to hex, factor the bits into groups of 4 and look up the corresponding hex digits