
Fundamentals of Python:

First Programs

Chapter 5:

Lists and Dictionaries

Modifications by

Mr. Dave Clausen



Fundamentals of Python: First Programs 2

Objectives

After completing this chapter, you will be able to:

• Construct lists and access items in those lists

• Use methods to manipulate lists

• Perform traversals of lists to process items in the 

lists

• Define simple functions that expect parameters and 

return values



Fundamentals of Python: First Programs 3

Objectives (continued)

• Construct dictionaries and access entries in those 

dictionaries

• Use methods to manipulate dictionaries

• Decide whether a list or a dictionary is an 

appropriate data structure for a given application



Fundamentals of Python: First Programs 4

Introduction

• A list allows the programmer to manipulate a 

sequence of data values of any types

• A dictionary organizes data values by association 

with other data values rather than by sequential 

position

• Lists and dictionaries provide powerful ways to 

organize data in useful and interesting applications



Fundamentals of Python: First Programs 5

Lists

• List: Sequence of data values (items or elements)

• Some examples:

– Shopping list for the grocery store

– Guest list for a wedding

– Recipe, which is a list of instructions

– Text document, which is a list of lines

– Words in a dictionary

• Each item in a list has a unique index that 

specifies its position (from 0 to length – 1)



Fundamentals of Python: First Programs 6

List Literals and Basic Operators

• Some examples:
['apples', 'oranges', 'cherries']

[[5, 9], [541, 78]]

• When an element is an expression, its value is 

included in the list:

• Lists of integers can be built using range:



Fundamentals of Python: First Programs 7

List Literals and Basic Operators 

(continued)

• len, [], +, and == work on lists as expected:

• To print the contents of a list:

• in detects the presence of an element: 



Fundamentals of Python: First Programs 8

List Literals & Basic Operators (cont.)



Fundamentals of Python: First Programs 9

Replacing an Element in a List

• A list is mutable

– Elements can be inserted, removed, or replaced

– The list itself maintains its identity, but its state—its 

length and its contents—can change

• Subscript operator is used to replace an element:

– Subscript is used to reference the target of the 

assignment, which is not the list but an element’s 

position within it



Fundamentals of Python: First Programs 10

Replacing an Element in a List 

(continued)

• Examples:



Fundamentals of Python: First Programs 11

List Methods for Inserting and 

Removing Elements

• The list type includes several methods for 

inserting and removing elements



Fundamentals of Python: First Programs 12

List Methods for Inserting and 

Removing Elements (continued)



Fundamentals of Python: First Programs 13

Searching a List

• in determines an element’s presence or absence, 

but does not return position of element (if found)

• Use method index to locate an element’s position 

in a list

– Raises an error when the target element is not found



Fundamentals of Python: First Programs 14

Sorting a List

• A list’s elements are always ordered by position, 

but you can impose a natural ordering on them

– For example, in alphabetical order

• When the elements can be related by comparing 
them <, >, and ==, they can be sorted

– The method sort mutates a list by arranging its 

elements in ascending order



Fundamentals of Python: First Programs 15

Mutator Methods and the Value None

• All of the functions and methods examined in 

previous chapters return a value that the caller can 

then use to complete its work

• Mutator methods (e.g., insert, append) usually 

return no value of interest to caller

– Python automatically returns the special value None



Fundamentals of Python: First Programs 16

Aliasing and Side Effects

• Mutable property of lists leads to interesting 

phenomena:

first and second are aliases

(refer to the exact same list object)



Fundamentals of Python: First Programs 17

Aliasing and Side Effects (continued)

• To prevent aliasing, copy contents of object:

Alternative:



Fundamentals of Python: First Programs 18

Equality: Object Identity and Structural 

Equivalence



Fundamentals of Python: First Programs 19

Example: Using a List to Find the 

Median of a Set of Numbers

• To find the median of a set of numbers:



Fundamentals of Python: First Programs 20

Tuples

• A tuple resembles a list, but is immutable

– Indicate by enclosing its elements in ()

• Most of the operators and functions used with lists 

can be used in a similar fashion with tuples



Fundamentals of Python: First Programs 21

Defining Simple Functions

• Defining our own functions allows us to organize 

our code in existing scripts more effectively



Fundamentals of Python: First Programs 22

The Syntax of Simple Function 

Definitions

• Definition of a function consists of header and body

– Docstring contains information about what the 
function does; to display, enter help(square)

• Type Contract: Illustrates the data 

type(s) entering the function and 

returned by the function.

Def square (x):

“”” number - - > number (works for float 

or int)“””



Fundamentals of Python: First Programs 23

Parameters and Arguments

• A parameter is the name used in the function definition for an 

argument that is passed to the function when it is called

• For now, the number and positions of arguments of a function call 

should match the number and positions of the parameters in the 

definition

• Some functions expect no arguments

– They are defined with no parameters

• A function can be defined in a Python shell, but it is 

more convenient to define it in an IDLE window

• Syntax of a function definition:



Fundamentals of Python: First Programs 24

The return Statement

• Place a return statement at each exit point of a 

function when function should explicitly return a 

value

• Syntax:

• If a function contains no return statement, Python 

transfers control to the caller after the last 

statement in the function’s body is executed

– The special value None is automatically returned



Fundamentals of Python: First Programs 25

Boolean Functions

• A Boolean function usually tests its argument for 

the presence or absence of some property

– Returns True if property is present; False otherwise

• Example:



Fundamentals of Python: First Programs 26

Defining a main Function

• main serves as the entry point for a script

– Usually expects no arguments and returns no value

• Definition of main and other functions can appear 

in no particular order in the script

– As long as main is called at the end of the script

• Script can be run from IDLE, imported into the 

shell, or run from a terminal command prompt



Fundamentals of Python: First Programs 27

Defining a main Function (continued)



Fundamentals of Python: First Programs 28

Case Study: Generating Sentences

• Request: write a program that generates sentences

• Analysis: program will generate sentences from a 

simplified subset of English



Fundamentals of Python: First Programs 29

Case Study: Generating Sentences 

(continued)

• Design:

– Assign task of generating each phrase to a separate 

function



Fundamentals of Python: First Programs 30

Case Study: Generating Sentences 

(continued)

• Implementation (coding):

– The variables for the data are initialized just below 
the import statement



Fundamentals of Python: First Programs 31

Case Study: Generating Sentences 

(continued)



Fundamentals of Python: First Programs 32

Case Study: Generating Sentences 

(continued)

• Testing:

– Two approaches:

• Bottom-up

• Top-down

– Wise programmer can mix bottom-up and top-down 

testing as needed



Fundamentals of Python: First Programs 33

Dictionaries

• A dictionary organizes information by association, 

not position

– Example: When you use a dictionary to look up the 

definition of “mammal,” you don’t start at page 1; 

instead, you turn to the words beginning with “M”

• Data structures organized by association are also 

called tables or association lists

• In Python, a dictionary associates a set of keys 

with data values



Fundamentals of Python: First Programs 34

Dictionary Literals

• A Python dictionary is written as a sequence of 

key/value pairs separated by commas

– Pairs are sometimes called entries

– Enclosed in curly braces ({ and })

– A colon (:) separates a key and its value

• Examples:
{'Sarah':'476-3321', 'Nathan':'351-7743'} A Phone book

{'Name':'Molly', 'Age':18} Personal information

{} An empty dictionary

• Keys can be data of any immutable types, including 

other data structures



Fundamentals of Python: First Programs 35

Adding Keys and Replacing Values

• Add a new key/value pair to a dictionary using []:

• Example:

• Use [] also to replace a value at an existing key:



Fundamentals of Python: First Programs 36

Accessing Values

• Use [] to obtain the value associated with a key

– If key is not present in dictionary, an error is raised

• If the existence of a key is uncertain, test for it 
using the dictionary method has_key

– Easier strategy is to use the method get



Fundamentals of Python: First Programs 37

Removing Keys

• To delete an entry from a dictionary, remove its key 
using the method pop

– pop expects a key and an optional default value as 

arguments



Fundamentals of Python: First Programs 38

Traversing a Dictionary

• To print all of the keys and their values:

• Alternative: Use the dictionary method items()

– Entries are represented as tuples within the list

• You can sort the list first:



Fundamentals of Python: First Programs 39

Traversing a Dictionary (continued)



Fundamentals of Python: First Programs 40

Example: The Hexadecimal System 

Revisited

• You can keep a hex-to-binary lookup table to aid 

in the conversion process



Fundamentals of Python: First Programs 41

Example: Finding the Mode of a List of 

Values

• The mode of a list of values is the value that 

occurs most frequently

• The following script inputs a list of words from a 

text file and prints their mode



Fundamentals of Python: First Programs 42

Example: Finding the Mode of a List of 

Values (continued)



Fundamentals of Python: First Programs 43

Case Study: Nondirective 

Psychotherapy (Request)

• Doctor in this kind of therapy responds to patient’s 

statements by rephrasing them or indirectly asking 

for more information

• Request:

– Write a program that emulates a nondirective 

psychotherapist



Fundamentals of Python: First Programs 44

Case Study: Nondirective 

Psychotherapy (Analysis)



Fundamentals of Python: First Programs 45

Case Study: Nondirective 

Psychotherapy (Analysis) (continued)

• When user enters a statement, program responds 

in one of two ways:

– With a randomly chosen hedge, such as “Please tell 

me more”

– By changing some key words in user’s input string 

and appending string to a randomly chosen qualifier

• Thus, to “My teacher always plays favorites,” program 

might reply, “Why do you say that your teacher always 

plays favorites?”



Fundamentals of Python: First Programs 46

Case Study: Nondirective 

Psychotherapy (Design)

• Program consists of a set of collaborating functions 

that share a common data pool

• Pseudocode:
output a greeting to the patient

while True

prompt for and input a string from the patient

if the string equals “Quit”

output a sign-off message to the patient

break

call another function to obtain a reply to this string

output the reply to the patient



Fundamentals of Python: First Programs 47

Case Study: Nondirective 

Psychotherapy (Implementation)



Fundamentals of Python: First Programs 48

Case Study: (Implementation, cont.)



Fundamentals of Python: First Programs 49

Case Study: Nondirective 

Psychotherapy (Testing)

• Functions in this program can be tested in a 

bottom-up or a top-down manner

• Program’s replies break down when:

– User addresses the therapist in the second person

– User uses contractions (for example, I’m and I’ll)

• With a little work, you can make the replies more 

realistic



Fundamentals of Python: First Programs 50

Summary

• A list is a sequence of zero or more elements

– Can be manipulated with the subscript, 
concatenation, comparison, and in operators

– Mutable data structure

– index returns position of target element in a list

– Elements can be arranged in order using sort

• Mutator methods are called to change the state of 
an object; usually return the value None

• Assignment of a variable to another one causes 

both to refer to the same data object (aliasing)



Fundamentals of Python: First Programs 51

Summary (continued)

• A tuple is similar to a list, but is immutable

• A function definition consists of header and body

– return returns a value from a function definition

• A dictionary associates a set of keys with values

– [] is used to add a new key/value pair to a dictionary 

or to replace a value associated with an existing key

– dict type includes methods to access and remove 

data in a dictionary

• Testing can be bottom-up, top-down, or you can use 

a mix of both


