Fundamentals of Python:
First Programs

Chapter 5:
Lists and Dictionaries

Modifications by
Mr. Dave Clausen



Objectives

After completing this chapter, you will be able to:
e Construct lists and access items in those lists
« Use methods to manipulate lists

« Perform traversals of lists to process items in the
lists

* Define simple functions that expect parameters and
return values

Fundamentals of Python: First Programs 2



ODbjectives (continued)

 Construct dictionaries and access entries in those
dictionaries

« Use methods to manipulate dictionaries

* Decide whether a list or a dictionary is an
appropriate data structure for a given application

Fundamentals of Python: First Programs



Introduction

* Alist allows the programmer to manipulate a
sequence of data values of any types

« Adictionary organizes data values by association
with other data values rather than by sequential
position

 Lists and dictionaries provide powerful ways to
organize data in useful and interesting applications

Fundamentals of Python: First Programs



Lists

 List: Sequence of data values (items or elements)

« Some examples:
— Shopping list for the grocery store
— Guest list for a wedding
— Recipe, which is a list of instructions
— Text document, which is a list of lines
— Words in a dictionary

« Each item in a list has a unique index that
specifies its position (from O to length — 1)

Fundamentals of Python: First Programs



List Literals and Basic Operators

« Some examples:
[ 'apples', 'oranges', 'cherries']
[[5, 91, [541, 78]]

 When an element is an expression, its value is
iIncluded in the list:

>>> X = 2
>>> [x, math.sqrt(x)]
[2, 1.4142135623730951]

 Lists of integers can be built using range:

>>> first = [1, 2, 3, 4]

>>> second = list(range(l, 5))
>>> first

[1, 2, 3, 4]

>>> sgecond

[1, 2, 3, 4]

>>>

Fundamentals of Python: First Programs



List Literals and Basic Operators
(continued)

 len, [], +, and == work on lists as expected:

>>> len(first)

4

>>> first[2:4]

[3, 4]

>>> first + [5, 6]
[, 2, 3, 4, 5, 6]
>>> first == second
True

« To print the contents of a list:

>>> print("1234")

1234

>>> print([1, 2, 3, 4])
[1, 2, 3, 4]

>>>

« in detects the presence of an element:

>>> 0 in [1, 2, 3]
False

Fundamentals of Python: First Programs



List Literals & Basic Operators (cont.)

OPERATOR OR FUNCTION

L[<an integer expression>]

L[<start>:<end>]

L+ L

print(L)
len(L)

list(range(<upper>))

==, !-' {' }' {-' =

for <variable> in L:
<statement>

<any value> in L

WHAT IT DOES

Subscript used to access an element at the
given index position.

Slices for a sublist. Returns a new list.

List concatenation. Returns a new list
consisting of the elements of the two
operands.

Prints the literal representation of the list.
Returns the number of elements in the list.

Returns a list containing the integers in the
range 0 through upper - 1.

Compares the elements at the
corresponding positions in the operand
lists. Returns True if all the results are true,
or False otherwise.

Iterates through the list, binding the
variable to each element.

Returns True if the value is in the list or
False otherwise.

[TﬂBLE 5.1] Some operators and functions used with lists

Fundamentals of Python: First Programs



Replacing an Element in a List

* Alistis mutable
— Elements can be inserted, removed, or replaced

— The list itself maintains its identity, but its state—its
length and its contents—can change

« Subscript operator is used to replace an element:

>>> example = [1, 2, 3, 4]
>>> example

[1, 2, 3, 4]

>>> example[3] = 0

>>> example

[1, 2, 3, 0]

— Subscript is used to reference the target of the
assignment, which is not the list but an element’s
position within it

Fundamentals of Python: First Programs



Replacing an Element in a List
(continued)

« Examples:

>>> gsentence = "This example has five words."

>>> words = sentence.split()

>>> words
['This', 'example', 'has’',
>>> index = 0

'five', 'words.']

>>> while index < len(words):
words[index] = words[index].upper/()

index += 1

>>> words
[ "THIS', 'EXAMPLE', 'HAS',

>>> numbers = range(6)

>>> numbers

[0, 1, 2, 3, 4, 5]

>>> numbers[0:3] = [11, 12,
>>> numbers

(11, 12, 13, 3, 4, 5]

Fundamentals of Python: First Programs

'FIVE', 'WORDS.']

13]

10



List Methods for Inserting and
Removing Elements

 The 1list type includes several methods for
Inserting and removing elements

LIST METHOD WHAT IT DOES

L.append(element) Adds element to the end of L.

L.extend(aList) Adds the elements of L to the end
of aList.

L.insert(index, element) Inserts element at index if index is less than
the length of L. Otherwise, inserts element at
the end of L.

L.pop() Removes and returns the element at the end
of L.

L.pop(index) Removes and returns the element at index.

[TABLE 5.2] List methods for inserting and removing elements

Fundamentals of Python: First Programs 11



List Methods for Inserting and
Removing Elements (continued)

>>> example = [1, 2]

>>> example

[1, 2]

>>> example.insert(1l, 10)
>>> example

[1, 10, 2]

>>> example.insert(3, 25)
>>> example

[1, 10, 2, 25]

>>> example = [1, 2]
>>> example.append(10)
>>> example

(1, 2, 10]

>>> example.extend([11l, 12, 13])
>>> example

1, 2, 10, 11, 12, 13]
>>> example.pop()

13

>>> example

[r, 2, 10, 11, 12]

>>> example.pop(0)

1

Fundamentals of Python: First Programs



Searching a List

* in determines an element’s presence or absence,
but does not return position of element (if found)

* Use method index to locate an element’s position
In a list
— Raises an error when the target element is not found

aList = [34, 45, 67]
target = 45
if target in aList:
print(alList.index(target))
else:
print(-1)

Fundamentals of Python: First Programs 13



Sorting a List

* Alist’'s elements are always ordered by position,
but you can impose a natural ordering on them

— For example, in alphabetical order

 When the elements can be related by comparing
them <, >, and ==, they can be sorted

— The method sort mutates a list by arranging its
elements in ascending order

>>> example = [4, 2, 10, 8]
>>> eXample

(4, 2, 10, 8]

>>> example.sort()

>>> example

[2, 4, 8, 10]

Fundamentals of Python: First Programs 14



Mutator Methods and the Value None

 All of the functions and methods examined Iin
previous chapters return a value that the caller can
then use to complete its work

* Mutator methods (e.g., insert, append) usually
return no value of interest to caller

— Python automatically returns the special value None

>>> al.ist = aList.sort()

>>> print(aList)
None

Fundamentals of Python: First Programs 15



Aliasing and Side Effects

« Mutable property of lists leads to interesting
phenomena:

>>> first = [10, 20, 30]
>>> second = first «— first and second are aliases

oot . .
‘*‘;ﬁ So. 301 (refer to the exact same list object)

>>> gecond

[10, 20, 30)]

>>> first[1l] = 99
>>> first

[10, 99, 30]

>>> gecond

[10, 99, 30]

10 {99 || 30

0 1 2

[FIGURE 5.1] Two variables refer to the same list object

Fundamentals of Python: First Programs 16



Aliasing and Side Effects (continued)

« To prevent aliasing, copy contents of object:

>>> third = []
>>> for element in first:
third.append(element)

=>> firgt Alternative:

[10, 99, 30]
>>> third
[10, 99, 30)

>>> third = first[:]

first —»|1 10 l1 99 || 30

0 1 2

third —>] 10 |} 99 || 30

0 1 2

[FIGURE 5.2] Two variables refer to different list objects

Fundamentals of Python: First Programs



Equality: Object Identity and Structural

>>> first = [20, 30,

>>> gecond

>>> third
>>> first
True
>>> first
True

>>> first i

True
>>> first
False

is

first
[20, 30,
second
third

second

third

Equivalence

40]

40]

20 {} 30 }] 40

0 1 2
|20"30"ﬁ0|
0 1 2

[FIGURE 5.3] Three variables and two distinct list objects

Fundamentals of Python: First Programs

18



Example: Using a List to Find the
Median of a Set of Numbers

 To find the median of a set of numbers:

fileName = input("Enter the filename: ")
f = open(fileName, 'r')

¢ Input the text, convert it to numbers, and
$# add the numbers to a list
numbers = []
for line in f:
words = line.split()
for word in words:
numbers. append (float (word))

# Sort the list and print the number at its midpoint
numbers.sort()
midpoint = len(numbers) // 2
print("The median is", end=" ")
if len(numbers) % 2 ==
print(numbers[midpoint])
else:
print( (numbers[midpoint] + numbers[midpoint - 1]1) / 2)

Fundamentals of Python: First Programs



Tuples

 Atuple resembles a list, but is immutable
— Indicate by enclosing its elements in ()

>>> fruits = ("apple", "banana")
>>> fruits

('apple', 'banana')

>>> meats = ("fish", "poultry")
>>> meats

('fish', 'poultry’)

>>> food = meats + fruits

>>> food

('fish', 'poultry', 'apple', 'banana')
>>> veggles = ["celery", "beans"]

>>> tuple(veggies)

('celery', 'beans')

* Most of the operators and functions used with lists
can be used in a similar fashion with tuples

Fundamentals of Python: First Programs

20



Defining Simple Functions

« Defining our own functions allows us to organize
our code In existing scripts more effectively

Fundamentals of Python: First Programs

21



The Syntax of Simple Function
Definitions
 Definition of a function consists of header and body

def square(x):
"""Returns the square of x. """
return x * X

>>> gquare(2)
4

— Docstring contains information about what the
function does; to display, enter help (square)

« Type Contract: Illustrates the data
type (s) entering the function and
returned by the function.

Def square (x):

w7 number - - > number (works for float

or int)“"”

Fundamentals of Python: First Programs 22



Parameters and Arguments

« Afunction can be defined in a Python shell, but it is
more convenient to define it in an IDLE window
e Syntax of a function definition:

def <function name>(<parameter-1>, .., <parameter-n=):
<body=>

« A parameter is the name used in the function definition for an
argument that is passed to the function when it is called

* For now, the number and positions of arguments of a function call

should match the number and positions of the parameters in the
definition

« Some functions expect no arguments
— They are defined with no parameters

Fundamentals of Python: First Programs 23



The return Statement

* Place a return statement at each exit point of a
function when function should explicitly return a
value

¢ Syntax:

return <expression>

 If a function contains no return statement, Python

transfers control to the caller after the last
statement in the function’s body is executed

— The special value None is automatically returned

Fundamentals of Python: First Programs 24



Boolean Functions

A Boolean function usually tests its argument for
the presence or absence of some property

— Returns True If property is present; False otherwise
 Example:

>>> odd(5)
True
>>> odd(6)
False
def odd(x):
"nrpeturns True 1f X 1is odd or False otherwise."""
if x %8 2 == 1:
return True
else:

return False

Fundamentals of Python: First Programs 25



Defining a main Function

 main serves as the entry point for a script

— Usually expects no arguments and returns no value
* Definition of main and other functions can appear

In no particular order in the script

— As long as main is called at the end of the script

« Script can be run from IDLE, imported into the
shell, or run from a terminal command prompt

Fundamentals of Python: First Programs

26



Defining a main Function (continued)

File: computesquare.py
Illustrates the definition of a main function.

def main():
"""The main function for this script."""
number = float(input("Enter a number: "))
result = square(number)
print("The square of", number, "is", result)

def square(x):
"""Returns the square of x."""

return x * X

# The entry point for program execution
main()

Fundamentals of Python: First Programs

27



Case Study: Generating Sentences

- Request: write a program that generates sentences

* Analysis: program wil

| generate sentences from a

simplified subset of English

PHRASE

Sentence
Noun phrase
Verb phrase

Prepositional phrase

ITS CONSTITUENTS

Noun phrase + Verb phrase
Article + Noun
Verb + Noun phrase + Prepositional phrase

Prepositon + Noun phrase

[TABLE 5.3]The grammar rules for the sentence generator

> python generator.py
Enter the number of sentences

: 3

THE BOY HIT THE BAT WITH A BOY

THE BOY HIT THE BALL BY A BAT
THE BOY SAW THE GIRL WITH THE

Fundamentals of Python: First Programs

GIRL
28



Case Study: Generating Sentences
(continued)

* Design:

— Assign task of generating each phrase to a separate
function

def sentence():
"mr"Builds and returns a sentence."""
return nounPhrase() + " " + verbPhrase() + "."

def nounPhrase():
"""Builds and returns a noun phrase."""
return random.choice(articles) + " " + random.choice(nouns)

def main():
"""Allows the user to input the number of sentences
to generate."""
number = int(input("Enter the number of sentences: "))
for count in range(number):
print(sentence())

Fundamentals of Python: First Programs 29



Case Study: Generating Sentences
(continued)

* Implementation (coding):

— The variables for the data are initialized just below
the import statement

Program: generator.py

Author: Ken

Generates and displays sentences using simple grammar
and vocabulary. Words are chosen at random.

import random

articles = ("A", "THE")

nouns = ("BOY", "GIRL", "BAT", "BALL",)

verbs = ("HIT", "SAW", "LIKED")

prepositions = ("WITH", "BY")

Fundamentals of Python: First Programs



Case Study: Generating Sentences
(continued)

def sentence():
"m"r"Builds and returns a sentence."""
return nounPhrase() + " " + verbPhrase()

def nounPhrase():
"""Builds and returns a noun phrase."""
return random.choice(articles) + " " + random.choice(nouns)

def verbPhrase():
"""Builds and returns a verb phrase."""
return random.choice(verbs) + " " + nounPhrase() + " " + \
prepositionalPhrase()

def prepositionalPhrase():
"""Builds and returns a prepositional phrase."""
return random.choice(prepositions) + " " + nounPhrase()

def main():
"""Allows the user to input the number of sentences
to generate."""
number = int(input("Enter the number of sentences: "))
for count in range(number):
print(sentence())

main()

Fundamentals of Python: First Programs



Case Study: Generating Sentences
(continued)

« Testing:
— Two approaches:
* Bottom-up
e Top-down

— Wise programmer can mix bottom-up and top-down
testing as needed

Fundamentals of Python: First Programs

32



Dictionaries

* A dictionary organizes information by association,
not position

— Example: When you use a dictionary to look up the
definition of “mammal,” you don'’t start at page 1;
instead, you turn to the words beginning with “M”

« Data structures organized by association are also
called tables or association lists

* In Python, a dictionary associates a set of keys
with data values

Fundamentals of Python: First Programs 33



Dictionary Literals

« A Python dictionary is written as a sequence of
key/value pairs separated by commas

— Pairs are sometimes called entries
— Enclosed in curly braces ({ and })
— A colon () separates a key and its value

« Examples:
{'Sarah':'476-3321', 'Nathan':'351-7743'} A Phone book
{'Name': 'Molly', 'Age':18} Personal information
{} An empty dictionary

« Keys can be data of any immutable types, including
other data structures

Fundamentals of Python: First Programs 34



Adding Keys and Replacing Values

* Add a new key/value pair to a dictionary using []:

<a dictionary=[<a key>] = <a value>
 Example:

>>> info = {}

>>> info["name"] = "Sandy"

>>> info["occupation"] = "hacker"

>>> info

{'name': 'Sandy', 'occupation': 'hacker'}

>>>

* Use [] also to replace a value at an existing key:

>>> info["occupation"] = "manager"

>>> info

{'name': 'Sandy', 'occupation': 'manager'}
b

Fundamentals of Python: First Programs



Accessing Values

« Use [] to obtain the value associated with a key
— If key Is not present in dictionary, an error Is raised

>>> info["name" ]

'Sandy’

>>> info["job"]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'Jjob'
>>>

* If the existence of a key is uncertain, test for it
using the dictionary method has_key

— Easier strategy is to use the method get

>>> print(info.get("job", None))
None
>>>

Fundamentals of Python: First Programs 36



Removing Keys

* To delete an entry from a dictionary, remove its key
using the method pop

— pop expects a key and an optional default value as
arguments

>>> print(info.pop("job", None))
None

>>> print(info.pop("occupation"))
manager

>>> info

{'name': 'Sandy'}

>>>

Fundamentals of Python: First Programs 37



Traversing a Dictionary

« To print all of the keys and their values:

for key in info:
print(key, info[key])

« Alternative: Use the dictionary method items ()

>>> grades = {90:"A", 80:"B", 70:"C"}
>>> grades.items()
[(&0, 'B'), (90, 'A'), (70, 'C")]

— Entries are represented as tuples within the list

for (key, value) in grades.items():
print(key, value)

 You can sort the list first:

theKeys = list(info.keys())

theKeys.sort()

for key in theKeys:
print(key, info[key])

Fundamentals of Python: First Programs 38



Traversing a Dictionary (continued)

DICTIONARY OPERATION

len(d)
aDict[key]

d.get(key [, default])

d.pop(key [, default])

list(d.keys())

list(d.values())
list(d.items())

d.has key(key)
d.clear()

for key in d:

WHAT IT DOES

Returns the number of entries in d.

Used for inserting a new key, replacing a value,
or obtaining a value at an existing key.

Returns the value if the key exists or returns the
default if the key does not exist. Raises an error if
the default is omitted and the key does not exist.

Removes the key and returns the value if the key
exists or returns the default if the key does not
exist. Raises an error if the default is omitted and
the key does not exist.

Returns a list of the keys.

Returns a list of the values.

Returns a list of tuples containing the keys and
values for each entry.

Returns True if the key exists or False otherwise.
Removes all the keys.

key is bound to each key in d in an
unspecified order.

[TABLE 5.4] Some commonly used dictionary operations

Fundamentals of Python: First Programs

39



Example: The Hexadecimal System
Revisited

* You can keep a hex-to-binary lookup table to aid
INn the conversion process

hexToBinaryTable = {'0':'0000', '1':'0001', '2':'0010"',
*3':'0011', '4':'0100', '5':'0101"',
'6':'0110', '7':'0111', '8':'1000"',
‘9':'1001', 'A':'1010', 'B':'1011"',
'c':'1100', 'D':'1101', 'E':'1110"',
'"F':'1111"}
def convert (number, table):
"""Builds and returns the base two representation of
number. """
binary = "'
for digit in number:
binary = binary + table[digit]
return binary

>>> convert("35A", hexToBinaryTable)
'001101011111"

Fundamentals of Python: First Programs

40



Example: Finding the Mode of a List of
Values

« The mode of a list of values is the value that
occurs most frequently

* The following script inputs a list of words from a
text file and prints their mode

fileName = input("Enter the filename: ")
f = open(fileName, 'r')

# Input the text, convert its words to uppercase, and
# add the words to a list
words = []
for line in f:
wordsInLine = line.split()
for word in wordsInLine:
words .append(word.upper())

Fundamentals of Python: First Programs 41



Example: Finding the Mode of a List of

Values (continued)

# Obtain the set of unique words and their
# frequencies, saving these associations in
# a dictionary
theDictionary = {}
for word in words:
number = theDictionary.get(word, None)
if number == None:
# word entered for the first time
theDictionary[word] = 1

else:
# word already seen, increment its number

theDictionary[word] = number + 1

# Find the mode by obtaining the maximum wvalue
# in the dictionary and determining its key
theMaximum = max(theDictionary.values())

for key in theDictionary:

if theDictionary[key] == theMaximum:
print ("The mode is", key)
break

Fundamentals of Python: First Programs

42



Case Study: Nondirective
Psychotherapy (Request)

* Doctor in this kind of therapy responds to patient’s
statements by rephrasing them or indirectly asking

for more information

* Request:
— Write a program that emulates a nondirective

psychotherapist

Fundamentals of Python: First Programs

43



Case Study: Nondirective
Psychotherapy (Analysis)

Good morning, I hope you are well today.
What can I do for you?

>> My mother and I don't get along
Why do you say that your mother and you don't get along

>> she always favors my sister
You seem to think that she always favors your sister

>> my dad and I get along fine
Can you explain why your dad and you get along fine

>> he helps me with my homework
Please tell me more

>> quit

Have a nice day!

[FIGURE 5.&] A session with the doctor program

Fundamentals of Python: First Programs

44



Case Study: Nondirective
Psychotherapy (Analysis) (continued)

 When user enters a statement, program responds
In one of two ways:

— With a randomly chosen hedge, such as “Please tell
me more”

— By changing some key words in user’s input string
and appending string to a randomly chosen qualifier

* Thus, to “My teacher always plays favorites,” program
might reply, “Why do you say that your teacher always
plays favorites?”

Fundamentals of Python: First Programs 45



Case Study: Nondirective
Psychotherapy (Design)

* Program consists of a set of collaborating functions
that share a common data pool

* Pseudocode:
output a greeting to the patient
while True
prompt for and input a string from the patient
if the string equals “Quit”
output a sign-off message to the patient
break
call another function to obtain a reply to this string
output the reply to the patient

Fundamentals of Python: First Programs 46



Case Study: Nondirective
Psychotherapy (Implementation)

womn

Program: doctor.py
Author: Ken
Conducts an interactive session of nondirective psychotherapy.

womn

import random

hedges = ("Please tell me more.",
"Many of my patients tell me the same thing.",

"Please continue.")
qualifiers = ("Why do you say that ",
"You seem to think that ",

"Can you explain why ")

replacements = {"I":"you", "me":"you", "my":"your",
"we":"you", "us":"you", "mine":"yours"}

Fundamentals of Python: First Programs 47



Case Study: (Implementation, cont.)

def reply(sentence):
"""Builds and returns a reply to the sentence."""
probability = random.randint(1l, 4)
if probability ==
return random.choice(hedges)
else:
return random.choice(qualifiers) + changePerson(sentence)

def changePerson(sentence):
"""Replaces first person pronouns with second person
pronouns."""
words = sentence.split()
replyWords = []
for word in words:

replyWords.append(replacements.get (word, word))

return " ".join(replyWords)

def main():
"""Handles the interaction between patient and doctor."""
print("Good morning, I hope you are well today.")
print("What can I do for you?")
while True:
sentence = input("\n>> ")

if sentence.upper() == "QUIT":
print("Have a nice day!")
break

print(reply(sentence))

main()
Fundamentals of Python: First Programs



Case Study: Nondirective
Psychotherapy (Testing)

* Functions in this program can be tested in a
bottom-up or a top-down manner

* Program’s replies break down when:
— User addresses the therapist in the second person
— User uses contractions (for example, I'm and I'll)

« With a little work, you can make the replies more
realistic

Fundamentals of Python: First Programs

49



Summary

« Alistis a sequence of zero or more elements

— Can be manipulated with the subscript,
concatenation, comparison, and in operators

— Mutable data structure
— index returns position of target element in a list
— Elements can be arranged in order using sort

Mutator methods are called to change the state of
an object; usually return the value None

* Assignment of a variable to another one causes
both to refer to the same data object (aliasing)

Fundamentals of Python: First Programs 50



Summary (continued)

A tuple is similar to a list, but is immutable

A function definition consists of header and body
— return returns a value from a function definition

A dictionary associates a set of keys with values

— [1 is used to add a new key/value pair to a dictionary
or to replace a value associated with an existing key

— dict type includes methods to access and remove
data in a dictionary

Testing can be bottom-up, top-down, or you can use
a mix of both

Fundamentals of Python: First Programs 51



