~g

((@:’.‘) 10001011110110000111

The Binary Search

0)Y
Mr. Dave Clausen



)

AR

Guessing Game

» Let’s play a guessing game.
— You will enter the largest number that you wish
to guess, and

— keep guessing until you find the random
number between 1 and the largest number that
you entered.

 This illustrates how the Binary Search finds
an element in the list.

GuessingGame.cpp GuessingGame.exe

Mr. Dave Clausen


GuessingGame.cpp
GuessingGame.exe

o~y —

AR

The Binary Search Description

The binary search consists of examining a
middle value of a list to see which half
contains the desired value. The middle
value of the appropriate half is then
examined to see which half of the half
contains the value in question. This halving
process Is continued until the value Is
located or it 1s determined that the value Is
not In the list.

Mr. Dave Clausen



B

Binary Search Variations

« We will not use any variations of the Binary
Search.

» We will only determine whether the target Is
In the list or not In the list.

« We will not find the index numbers of the
target or how many occurrences there are In
the list.

Mr. Dave Clausen 4



~y

AR

Binary Search Assumptions

« The list must be sorted!

— This will allow us to find the middle data item
In the list In constant time, by dividing the sum
of the first index position and the last index
position by two and using the subscript
operation.

Mr. Dave Clausen



~

AP

Binary Search Uses Recursion

« The basic idea of binary search can be expressed
recursively.

If there are items in the list remaining to be examined, we compare
the target value to the item at the middle position in the list.

If the target value equals this item, we return the index position of
the item.

If the target value Is greater than the item at the middle position,
the target will be somewhere to the right of the middle position if it
IS in the list at all, so we recursively search the right half of the list.

Otherwise, the target value will be to the left of the middle position
if it is in the list at all, so we recursively search the left half of the
list.

If the target value is not in the list, we will run out of items to
consider at the end of some recursive process, so we return the
value -1.

Mr. Dave Clausen 6



)

AR

Binary Search Parameters

 There are four input parameters to the problem:
— the target item,
— the list,
— the index value of the first position in the list,
— and the index value of the last position in the list.

 There Is one value to be returned:

— -1 indicating that we have not found the target item in the
list
— or an integer indicating its index position If we have found
It.
 The initial value of the first position is zero. The
Initial value of the last index position is the number of
data items in the list minus one.

Mr. Dave Clausen 7




~

AR

A Binary Search Algorithm

//Using lteration
If there are no more items to consider then
Return -1
Else
Set midpoint to (last + first) / 2
If the item at index midpoint = = the target item then
Return midpoint
Else if the item at index midpoint > the target item then

Return search the left half of the list (from indices first to midpoint
- 1)
Else

Return search the right half of the list (from indices midpoint + 1 to
last)

Mr. Dave Clausen 8



Binary Search Python
Using lteration

left = 0
right = len(listCopy)-1
while left <=right:
midpoint = (left+right)//Z
if target == listCopy[midpoint]:

return midpoint
elif target < listCopyl[midpoint]:
right = midpoint - 1

else:
left = midpoint + 1

return -1

Mr. Dave Clausen



Binary Search Python
Using Recursion

return -1

else:
midpoint = (first + last)y [/ 2
if listCopy[midpoint] == target:

return midpoint
elif listCopylmidpoint] > target

return binarySearchRecurzion(target, listCopy, first, midpoint - 1)
else:

return binarySearchRecursion(target, listCopy, midpoint + 1, last)

Mr. Dave Clausen 10



~

AP

The Binary Search C ++

//Using Recursion
Int Binary_Search(int target, const apvector<int> &list, int first, int last)

{
if (first > last)
return -1;
else
{
Int midpoint = (first + last) / 2;
If (listfmidpoint] == target)
return midpoint;
else if (listfmidpoint] > target)
return Binary_Search(target, list, first, midpoint - 1);
else
return Binary_Search(target, list, midpoint + 1, last);
}
}

Mr. Dave Clausen 11



)

CAR .
Interface for Binary Search C++

« For many of the recursive functions it Is customary
to start with an “interface” function, since recursive

functions call themselves.
 Here Is the “interface” for the Binary Search:

Int Bin_Search(int target, const apvector<int> &list)

{
return Binary_Search(target, list, O, list.length() - 1);

¥

* You can use logical size - 1 instead of list.length() —1 if the
logical and physical sizes are not the same. Don’t forget to
pass logical size to the Bin_Search function.

Mr. Dave Clausen 12



~y

AR

Driver Program

 Here Is a driver program to test the Binary
Search source code:

binsearch.cpp binsearch.txt

Mr. Dave Clausen


binsearch.cpp
binsearch.txt

&
4Y Binary Search Walk Through

 Before continuing, let's walk through a binary search to
better understand how it works. Assume 1list Is the

vector with values as indicated.

* Furthermore, assume target contains the value 205.
Then initially, first, last, and target have the

values

Mr. Dave Clausen 14



Z
) ] Walk Through 2
 Alisting of values by each call of binsearch produces:

After fourth call 20

* Note that we need only four comparisons to find the target
at the ninth position in the list.

Mr. Dave Clausen 15



o —

AR

Walk Through 3

- To illustrate what happens when the value being looked for
IS not in the vector, suppose target contains 210. The

listing of values then produces:

After initial call
e secona i {71131

After fourth call --
After fifth call

« Atthisstage, first > last and the recursive process
terminates.

'l]'
T A O N T —
R —

Mr. Dave Clausen 16



N,

Big - O Notation

Big - O notation Is used to describe the efficiency
of a search or sort. The actual time necessary to
complete the sort varies according to the speed of

your system. Big - O notation Is an approximate
mathematical formula to determine how many
operations are necessary to perform the search or
sort. The Big - O notation for the Binary Search is
O(log,n ), because It takes approximately log,n
passes to find the target element.

Mr. Dave Clausen 17



