
The Binary Search

by

Mr. Dave Clausen

10001011110110000111

Mr. Dave Clausen 2

Guessing Game

• Let’s play a guessing game.

– You will enter the largest number that you wish
to guess, and

– keep guessing until you find the random
number between 1 and the largest number that
you entered.

• This illustrates how the Binary Search finds
an element in the list.

GuessingGame.cpp GuessingGame.exe

GuessingGame.cpp
GuessingGame.exe

Mr. Dave Clausen 3

The Binary Search Description
The binary search consists of examining a
middle value of a list to see which half
contains the desired value. The middle
value of the appropriate half is then
examined to see which half of the half
contains the value in question. This halving
process is continued until the value is
located or it is determined that the value is
not in the list.

Mr. Dave Clausen 4

Binary Search Variations

• We will not use any variations of the Binary

Search.

• We will only determine whether the target is

in the list or not in the list.

• We will not find the index numbers of the

target or how many occurrences there are in

the list.

Mr. Dave Clausen 5

Binary Search Assumptions

• The list must be sorted!

– This will allow us to find the middle data item

in the list in constant time, by dividing the sum

of the first index position and the last index

position by two and using the subscript

operation.

Mr. Dave Clausen 6

Binary Search Uses Recursion

• The basic idea of binary search can be expressed

recursively.

– If there are items in the list remaining to be examined, we compare
the target value to the item at the middle position in the list.

– If the target value equals this item, we return the index position of
the item.

– If the target value is greater than the item at the middle position,
the target will be somewhere to the right of the middle position if it
is in the list at all, so we recursively search the right half of the list.

– Otherwise, the target value will be to the left of the middle position
if it is in the list at all, so we recursively search the left half of the
list.

– If the target value is not in the list, we will run out of items to
consider at the end of some recursive process, so we return the
value -1.

Mr. Dave Clausen 7

Binary Search Parameters
• There are four input parameters to the problem:

– the target item,

– the list,

– the index value of the first position in the list,

– and the index value of the last position in the list.

• There is one value to be returned:

– -1 indicating that we have not found the target item in the
list

– or an integer indicating its index position if we have found
it.

• The initial value of the first position is zero. The
initial value of the last index position is the number of
data items in the list minus one.

Mr. Dave Clausen 8

A Binary Search Algorithm
//Using Iteration

If there are no more items to consider then

Return -1

Else

Set midpoint to (last + first) / 2

If the item at index midpoint = = the target item then

Return midpoint

Else if the item at index midpoint > the target item then

Return search the left half of the list (from indices first to midpoint

- 1)

Else

Return search the right half of the list (from indices midpoint + 1 to

last)

Binary Search Python

Using Iteration

Mr. Dave Clausen 9

Binary Search Python

Using Recursion

Mr. Dave Clausen 10

Mr. Dave Clausen 11

//Using Recursion

int Binary_Search(int target, const apvector<int> &list, int first, int last)

{

if (first > last)

return -1;

else

{

int midpoint = (first + last) / 2;

if (list[midpoint] == target)

return midpoint;

else if (list[midpoint] > target)

return Binary_Search(target, list, first, midpoint - 1);

else

return Binary_Search(target, list, midpoint + 1, last);

}

}

The Binary Search C ++

Mr. Dave Clausen 12

Interface for Binary Search C++

• For many of the recursive functions it is customary
to start with an “interface” function, since recursive
functions call themselves.

• Here is the “interface” for the Binary Search:

int Bin_Search(int target, const apvector<int> &list)

{

return Binary_Search(target, list, 0, list.length() - 1);

}

• You can use logical size - 1 instead of list.length() –1 if the
logical and physical sizes are not the same. Don’t forget to
pass logical size to the Bin_Search function.

Mr. Dave Clausen 13

Driver Program

• Here is a driver program to test the Binary

Search source code:

binsearch.cpp binsearch.txt

binsearch.cpp
binsearch.txt

Mr. Dave Clausen 14

Binary Search Walk Through

• Before continuing, let's walk through a binary search to

better understand how it works. Assume list is the

vector with values as indicated.

• Furthermore, assume target contains the value 205.

Then initially, first, last, and target have the

values

Mr. Dave Clausen 15

Walk Through 2

• A listing of values by each call of binsearch produces:

• Note that we need only four comparisons to find the target

at the ninth position in the list.

Mr. Dave Clausen 16

Walk Through 3

• To illustrate what happens when the value being looked for

is not in the vector, suppose target contains 210. The

listing of values then produces:

• At this stage, first > last and the recursive process

terminates.

Mr. Dave Clausen 17

Big - O Notation

Big - O notation is used to describe the efficiency

of a search or sort. The actual time necessary to

complete the sort varies according to the speed of

your system. Big - O notation is an approximate

mathematical formula to determine how many

operations are necessary to perform the search or

sort. The Big - O notation for the Binary Search is

O(log2n), because it takes approximately log2n

passes to find the target element.

