The Insertion
Sort

Mr. Dave Clausen
La Canada High School

Insertion Sort Description

The Insertion sort takes advantage an array’s partial
ordering and is the most efficient sort to use when you
know the array Is already partially ordered.

On the kth pass, the kth item should be inserted into its
place among the first k items in the vector.

After the kth pass (k starting at 1), the first k items of the
vector should be in sorted order.

This 1s like the way that people pick up playing cards and
order them in their hands. When holding the first (k - 1)
cards in order, a person will pick up the kth card and
compare It with cards already held until its sorted spot Is
found.

Mr. Dave Clausen 2

Insertion Sort Algorithm

For each k from 1 to n - 1 (k is the index of vector element to insert)
Set item_to_insert to v[K]
Setjtok-1
(j starts at k - 1 and is decremented until insertion position is found)
While (insertion position not found) and (not beginning of vector)
If item_to_insert < V[j]
Move V[j] to index position j + 1
Decrement j by 1
Else
The insertion position has been found
item_to_insert should be positioned at index j + 1

Mr. Dave Clausen 3

Python Code For Insertion Sort

Uses a break statement (don’t use this code please)

—def insertionsort(listCopy):
1=1
- while 1 < len{listCopy):
itemToInsert = listCopy[i]

17 =1 -1
while 7] >= (:
if 1temToInsert <« listCopyl[]]:
listCopy[]+1] = listCopyl[]]
1-=1
else:
break
listCopy[]+1] = 1temToInsert
1+=1

Mr. Dave Clausen 4

Python Code For Insertion Sort 2

No break statement

insertionSortloBreak (1istCopy) :
stilllooking = False
i=1

looking for slot to insert list[j

itemToInsert =
17=1-1
stilllooking =
while] >= 0 and TlllLDOPlhq
if itemTolInsert <« lis
listCopy[] + 11
3-=1
else:
stillLooking = False
#Upon leaving loop,] + 1 is the index
#where iltemToInsert belongs
listCopyl[] + 1] = itemTolInsert
i=i+1

Mr. Dave Clausen 5

Java Code For Insertion Sort

public static void insertionSort(int[] list){
int itemToInsert, j; // On the kth pass, insert item Kk into its correct position among
boolean stiIILooking; /1 the first k entries in array.

for (int k = 1; k < list.length; k++){
/I Walk backwards through list, looking for slot to insert list[k]
itemTolnsert = list[k];
j=k-1;
stillLooking = true;
while ((j >= 0) && stillLooking)
If (itemTolnsert < list[j]) {
list[j + 1] = list[j];
-
}else
stillLooking = false;

/I Upon leaving loop, j + 1 is the index
I/l where itemTolnsert belongs

list[j + 1] = itemTolnsert;

¥
¥

Mr. Dave Clausen

C ++ Code For Insertion Sort

void Insertion_Sort(apvector<int> &v){
int item_to _insert, J; // On the kth pass, insert item K into its correct
bool still_looking; // position among the first k entries in vector.
for (intk = 1; k < v.length(); ++k)
{ /I Walk backwards through list, looking for slot to insert v[k]
item_to_insert = v[k];
j=k-1;
still_looking = true;
while ((j >= 0) && still_looking)
If (item_to_insert < Vv[j])
{
vh + 1] =vll;
-J;
¥
else
still_looking = false; // Upon leaving loop, j + 1 is the index
v[j + 1] = item_to_insert; // where item_to_insert belongs

}

} Mr. Dave Clausen 7

Insertion Sort Example

The Unsorted Vector: 80
40

For each pass, the index j begins at 32
the (k - 1)st item and moves that 84
item to position j + 1 until we find 61

the insertion point for what was

originally the kth item.

We start with k =1
and set] = k-1 or O (zero)

Mr. Dave Clausen

The First Pass

K=2
m Insert 40, m Insert 40
compare / m m
3— & move 39
84 84 84
6l 61 61

Iitem_to_Insert
40

Mr. Dave Clausen

61

Insert 32,

compare / 80

& move

The Second Pass

mCompare

32

Mr. Dave Clausen

30 & move 40

80

84 84

61 61
Iitem_to_Insert

Insert SZE

40
80
84

61

10

Insert 847?

compare
& stop

The Third Pass

Iitem_to_Insert
84

Mr. Dave Clausen

11

The Fourth Pass

K=5
z
- Compare
= 40 & stop
80 ompare [e{0) Insert 61

Insert 61, 84 & mave

compare / 84

& move

80

84

Iitem_to_Insert
61

Mr. Dave Clausen

What “Moving” Means

item_to_insert

Place the second element
Into the variable
item_to_insert.

Mr. Dave Clausen

80

40

32

84

61

13

What “Moving” Means

item_to_insert

Replace the second element
with the value of the first
element.

Mr. Dave Clausen

80
801

32

84

61

14

What “Moving” Means

item_to_iV

Replace the first element
(in this example) with the
variable item_to _insert.

Mr. Dave Clausen

40

80

32

84

61

15

Big - O Notation

Big - O notation Is used to describe the efficiency
of a search or sort. The actual time necessary to
complete the sort varies according to the speed of

your system. Big - O notation is an approximate
mathematical formula to determine how many
operations are necessary to perform the search or
sort. The Big - O notation for the Insertion Sort Is
O(n?), because it takes approximately n? passes to
sort the “n” elements.

Mr. Dave Clausen 16

