
The Insertion

Sort

Mr. Dave Clausen

La Cañada High School

Mr. Dave Clausen 2

Insertion Sort Description

The insertion sort takes advantage an array’s partial

ordering and is the most efficient sort to use when you

know the array is already partially ordered.

On the kth pass, the kth item should be inserted into its

place among the first k items in the vector.

After the kth pass (k starting at 1), the first k items of the

vector should be in sorted order.

This is like the way that people pick up playing cards and

order them in their hands. When holding the first (k - 1)

cards in order, a person will pick up the kth card and

compare it with cards already held until its sorted spot is

found.

Mr. Dave Clausen 3

Insertion Sort Algorithm

For each k from 1 to n - 1 (k is the index of vector element to insert)

Set item_to_insert to v[k]

Set j to k - 1

(j starts at k - 1 and is decremented until insertion position is found)

While (insertion position not found) and (not beginning of vector)

If item_to_insert < v[j]

Move v[j] to index position j + 1

Decrement j by 1

Else

The insertion position has been found

item_to_insert should be positioned at index j + 1

Mr. Dave Clausen 4

Python Code For Insertion Sort

Uses a break statement (don’t use this code please)

Python Code For Insertion Sort 2
No break statement

Mr. Dave Clausen 5

Mr. Dave Clausen 6

Java Code For Insertion Sort
public static void insertionSort(int[] list){

int itemToInsert, j; // On the kth pass, insert item k into its correct position among

boolean stillLooking; // the first k entries in array.

for (int k = 1; k < list.length; k++){

// Walk backwards through list, looking for slot to insert list[k]

itemToInsert = list[k];

j = k - 1;

stillLooking = true;

while ((j >= 0) && stillLooking)

if (itemToInsert < list[j]) {

list[j + 1] = list[j];

j--;

}else

stillLooking = false;

// Upon leaving loop, j + 1 is the index

// where itemToInsert belongs

list[j + 1] = itemToInsert;

}

}

Mr. Dave Clausen 7

C ++ Code For Insertion Sort
void Insertion_Sort(apvector<int> &v){

int item_to_insert, j; // On the kth pass, insert item k into its correct

bool still_looking; // position among the first k entries in vector.

for (int k = 1; k < v.length(); ++k)

{ // Walk backwards through list, looking for slot to insert v[k]

item_to_insert = v[k];

j = k - 1;

still_looking = true;

while ((j >= 0) && still_looking)

if (item_to_insert < v[j])

{

v[j + 1] = v[j];

--j;

}

else

still_looking = false; // Upon leaving loop, j + 1 is the index

v[j + 1] = item_to_insert; // where item_to_insert belongs

}

}

Mr. Dave Clausen 8

80

40

32

84

61

For each pass, the index j begins at

the (k - 1)st item and moves that

item to position j + 1 until we find

the insertion point for what was

originally the kth item.

We start with k = 1

and set j = k-1 or 0 (zero)

Insertion Sort Example

The Unsorted Vector:

Mr. Dave Clausen 9

The First Pass

80

40

32

84

61

Insert 40,

compare

& move

80

80

32

84

61

40

80

32

84

61

item_to_insert

40

Insert 40

K = 2

Mr. Dave Clausen 10

The Second Pass

40

80

32

84

61

Insert 32,

compare

& move

40

80

80

84

61

40

40

80

84

61

item_to_insert

32

Compare

& move

K = 3

32

40

80

84

61

Insert 32

Mr. Dave Clausen 11

The Third Pass

32

40

80

84

61

Insert 84?

compare

& stop

item_to_insert

84

K = 4

Mr. Dave Clausen 12

The Fourth Pass

32

40

80

84

61

Insert 61,

compare

& move

32

40

80

84

84

32

40

80

80

84

item_to_insert

61

Compare

& move

K = 5

32

40

61

80

84

Compare

& stop

Insert 61

Mr. Dave Clausen 13

What “Moving” Means

80

40

32

84

61

item_to_insert

Place the second element

into the variable

item_to_insert.

40

Mr. Dave Clausen 14

What “Moving” Means

80

80

32

84

61

Replace the second element

with the value of the first

element.

40

item_to_insert

Mr. Dave Clausen 15

What “Moving” Means

40

80

32

84

61

Replace the first element

(in this example) with the

variable item_to_insert.

40

item_to_insert

Mr. Dave Clausen 16

Big - O Notation

Big - O notation is used to describe the efficiency

of a search or sort. The actual time necessary to

complete the sort varies according to the speed of

your system. Big - O notation is an approximate

mathematical formula to determine how many

operations are necessary to perform the search or

sort. The Big - O notation for the Insertion Sort is

O(n2), because it takes approximately n2 passes to

sort the “n” elements.

