
Fundamentals of Python:

First Programs

Chapter 6: Design 

with Functions



Fundamentals of Python: First Programs 2

Objectives

After completing this chapter, you will be able to:

• Explain why functions are useful in structuring code 

in a program

• Employ top-down design to assign tasks to 

functions

• Define a recursive function



Fundamentals of Python: First Programs 3

Objectives (continued)

• Explain the use of the namespace in a program 

and exploit it effectively

• Define a function with required and optional 

parameters

• Use higher-order functions for mapping, filtering, 

and reducing



Fundamentals of Python: First Programs 4

Functions as Abstraction Mechanisms

• An abstraction hides detail

– Allows a person to view many things as just one 

thing

• We use abstractions to refer to the most common 

tasks in everyday life

– For example, the expression “doing my laundry”

• Effective designers must invent useful abstractions 

to control complexity



Fundamentals of Python: First Programs 5

Functions Eliminate Redundancy

• Functions serve as abstraction mechanisms by 

eliminating redundant, or repetitious, code



Fundamentals of Python: First Programs 6

Functions Hide Complexity

• Functions serve as abstraction mechanisms is by 

hiding complicated details

• For example, consider the previous sum function

– The idea of summing a range of numbers is simple; 

the code for computing a summation is not

• A function call expresses the idea of a process to 

the programmer

– Without forcing him/her to wade through the complex 

code that realizes that idea



Fundamentals of Python: First Programs 7

Functions Support General Methods 

with Systematic Variations

• An algorithm is a general method for solving a 

class of problems

• The individual problems that make up a class of 

problems are known as problem instances

– What are the problem instances of our summation 

algorithm?

• Algorithms should be general enough to provide a 

solution to many problem instances

– A function should provide a general method with 

systematic variations



Fundamentals of Python: First Programs 8

Functions Support the Division of 

Labor

• In a well-organized system, each part does its own 

job in collaborating to achieve a common goal

• In a computer program, functions can enforce a 

division of labor

– Each function should perform a single coherent task

• Example: Computing a summation

• Each of the tasks required by a system can be 

assigned to a function

– Including the tasks of managing or coordinating the 

use of other functions



Fundamentals of Python: First Programs 9

Problem Solving with Top-Down 

Design

• Top-down design starts with a global view of the 

entire problem and breaks the problem into 

smaller, more manageable subproblems

– Process known as problem decomposition

• As each subproblem is isolated, its solution is 

assigned to a function

• As functions are developed to solve subproblems, 

solution to overall problem is gradually filled out

– Process is also called stepwise refinement



Fundamentals of Python: First Programs 10

The Design of the Text-Analysis 

Program



Fundamentals of Python: First Programs 11

The Design of the Sentence-Generator 

Program



Fundamentals of Python: First Programs 12

The Design of the Doctor Program



Fundamentals of Python: First Programs 13

Design with Recursive Functions

• In top-down design, you decompose a complex 

problem into a set of simpler problems and solve 

these with different functions

• In some cases, you can decompose a complex 

problem into smaller problems of the same form

– Subproblems can be solved using the same function

• This design strategy is called recursive design

• Resulting functions are called recursive functions



Fundamentals of Python: First Programs 14

Defining a Recursive Function

• A recursive function is a function that calls itself

– To prevent function from repeating itself indefinitely, 

it must contain at least one selection statement

• Statement examines base case to determine whether 

to stop or to continue with another recursive step

• To convert displayRange to a recursive function:

– You can replace loop with a selection statement and 

assignment statement with a recursive call



Fundamentals of Python: First Programs 15

Defining a Recursive Function 

(continued)

• Making displayRange recursive (continued):

• Most recursive functions expect at least one 

argument

• Another example: Recursive version of sum



Fundamentals of Python: First Programs 16

Tracing a Recursive Function



Fundamentals of Python: First Programs 17

Using Recursive Definitions to 

Construct Recursive Functions

• Recursive functions are frequently used to design 

algorithms that have a recursive definition

– A recursive definition consists of equations that state 

what a value is for one or more base cases and one 

or more recursive cases

• Example: Fibonacci sequence
1 1 2 3 5 8 13 . . .



Fundamentals of Python: First Programs 18

Recursion in Sentence Structure

• Recursive solutions can often flow from the 

structure of a problem

• Example: Structure of sentences in a language

– A noun phrase can be modified by a prepositional 

phrase, which also contains another noun phrase

 Indirect recursion



Fundamentals of Python: First Programs 19

Infinite Recursion

• Infinite recursion arises when programmer fails to 

specify base case or to reduce size of problem in a 

way that terminates the recursive process

– In fact, the Python virtual machine eventually runs 

out of memory resources to manage the process



Fundamentals of Python: First Programs 20

The Costs and Benefits of Recursion

• PVM reserves an area of memory for the call stack

• For each call of a function, the PVM must allocate 

on the call stack a stack frame, which contains:

– Values of the arguments

– Return address for the particular function call

– Space for the function call’s return value

• When a call returns, return address is used to locate 

the next instruction, and stack frame is deallocated

• Amount of memory needed for a loop does not grow 

with the size of the problem’s data set



Fundamentals of Python: First Programs 21

The Costs and Benefits of Recursion 

(continued)



Fundamentals of Python: First Programs 22

Case Study: Gathering Information 

from a File System

• Request: Write a program that allows the user to 

obtain information about the file system

• Analysis:

– File systems are tree-like structures

– At the top of the tree is the root directory

– Under the root are files and subdirectories

– Each directory in the system except the root lies 

within another directory called its parent

– Example of a path (UNIX-based file system):

• /Users/KenLaptop/Book/Chapter6/Chapter6.doc



Fundamentals of Python: First Programs 23

Case Study: Gathering Information 

from a File System (continued)



Fundamentals of Python: First Programs 24

Case Study: Gathering Information 

from a File System (continued)

– When user enters a number, program runs 
command; then, displays CWD and menu again

– An unrecognized command produces an error 
message



Fundamentals of Python: First Programs 25

Case Study: Gathering Information 

from a File System (continued)



Fundamentals of Python: First Programs 26

Case Study: Gathering Information 

from a File System (continued)

• Design:



Fundamentals of Python: First Programs 27

Case Study: Gathering Information 

from a File System (continued)

…



Fundamentals of Python: First Programs 28

Managing a Program’s Namespace

• A program’s namespace is the set of its variables 

and their values

– You can control it with good design principles



Fundamentals of Python: First Programs 29

Module Variables, Parameters, and 

Temporary Variables

• Module variables and temporary variables 
receive their values as soon as they are introduced

• Parameters behave like a variable and are 
introduced in a function or method header

– Do not receive a value until the function is called

doctor.py file (module name is doctor):

A module variable A parameter name

A temporary variable

A method name



Fundamentals of Python: First Programs 30

Scope

• Scope: Area in which a name refers to a given 

value

– Temporary variables are restricted to the body of the 

functions in which they are introduced

– Parameters are invisible outside function definition

– The scope of module variables includes entire module 

below point where they are introduced

• A function can reference a module variable, but can’t 

under normal circumstances assign a new value to it



Fundamentals of Python: First Programs 31

Lifetime

• Variable’s lifetime: Period of time when variable 

has memory storage associated with it

– When a variable comes into existence, storage is 

allocated for it; when it goes out of existence, 

storage is reclaimed by the PVM

• Module variables come into existence when 

introduced and generally exist for lifetime of 

program that introduces or imports them

• Parameters and temporary variables come into 

existence when bound to values during call, but go 

out of existence when call terminates



Fundamentals of Python: First Programs 32

Default (Keyword) Arguments

• Arguments provide the function’s caller with the 

means of transmitting information to the function

• Programmer can specify optional arguments with 

default values in any function definition:

– Following the required arguments are one or more 

default or keyword arguments

– When function is called with these arguments, 

default values are overridden by caller’s values



Fundamentals of Python: First Programs 33

Default (Keyword) Arguments 

(continued)



Fundamentals of Python: First Programs 34

Default (Keyword) Arguments 

(continued)

• The default arguments that follow can be supplied 

in two ways:

– By position

– By keyword



Fundamentals of Python: First Programs 35

Higher-Order Functions

(Advanced Topic)

• A higher-order function expects a function and a 

set of data values as arguments

– Argument function is applied to each data value and 

a set of results or a single data value is returned

• A higher-order function separates task of 

transforming each data value from logic of 

accumulating the results



Fundamentals of Python: First Programs 36

Functions as First-Class Data Objects

• Functions can be assigned to variables, passed as 

arguments, returned as the values of other 

functions, and stored in data structures



Fundamentals of Python: First Programs 37

Functions as First-Class Data Objects 

(continued)

• Passing a function as an argument is no different 

from passing any other datum:



Fundamentals of Python: First Programs 38

Mapping

• Mapping applies a function to each value in a 

sequence and returns a new sequence of the 

results



Fundamentals of Python: First Programs 39

Mapping (continued)



Fundamentals of Python: First Programs 40

Filtering

• When filtering, a function called a predicate is 

applied to each value in a list

– If predicate returns True, value is added to a new 

list; otherwise, value is dropped from consideration



Fundamentals of Python: First Programs 41

Reducing

• When reducing, we take a list of values and 

repeatedly apply a function to accumulate a single 

data value



Fundamentals of Python: First Programs 42

Using lambda to Create Anonymous 

Functions

• A lambda is an anonymous function

– When the lambda is applied to its arguments, its 

expression is evaluated and its value is returned



Fundamentals of Python: First Programs 43

Creating Jump Tables

• A jump table is a dictionary of functions keyed by 

command names



Fundamentals of Python: First Programs 44

Summary

• A function serves as abstraction mechanism and 

eliminates redundant patterns of code

• Top-down design is strategy that decomposes 

complex problem into simpler subproblems and 

assigns their solutions to functions

• A structure chart is diagram of relationships among 

cooperating functions

• Recursive design is special case of top-down 

design, in which complex problem is decomposed 

into smaller problems of the same form



Fundamentals of Python: First Programs 45

Summary (continued)

• A recursive function is a function that calls itself

– Parts: Base case and recursive step

– Can be computationally expensive

• Programmers must avoid infinite recursion

• Program namespace structured in terms of module 

variables, parameters, and temporary variables

• Scope can be used to control the visibility of names 

in a namespace

• The lifetime of a variable is duration of program 

execution during which it uses memory storage



Fundamentals of Python: First Programs 46

Summary (continued)

• Functions are first-class data objects

• Higher-order functions can expect other functions 

as arguments and/or return functions as values

• A mapping function expects a function and a list of 

values as arguments

• A predicate is a Boolean function

• A filtering function expects a predicate and a list of 

values as arguments

• A reducing function expects a function and a list of 

values as arguments


