Fundamentals of Python:
First Programs

Chapter 6: Design
with Functions

Objectives

After completing this chapter, you will be able to:

« Explain why functions are useful in structuring code
In a program

* Employ top-down design to assign tasks to
functions

 Define a recursive function

Fundamentals of Python: First Programs 2

ODbjectives (continued)

* EXxplain the use of the namespace in a program
and exploit it effectively

« Define a function with required and optional
parameters

« Use higher-order functions for mapping, filtering,
and reducing

Fundamentals of Python: First Programs

Functions as Abstraction Mechanisms

 An abstraction hides detall
— Allows a person to view many things as just one
thing
* We use abstractions to refer to the most common
tasks in everyday life

— For example, the expression “doing my laundry”

« Effective designers must invent useful abstractions
to control complexity

Fundamentals of Python: First Programs

Functions Eliminate Redundancy

* Functions serve as abstraction mechanisms by
eliminating redundant, or repetitious, code

def sum(lower, upper):

Arguments: A lower bound and an upper bound

Returns: the sum of the numbers between the arguments
and including them

result = 0

while lower <= upper:
result += lower
lower += 1

return result

>>> sum(1, 4)
10

>>> sum(50, 100)
3825

The summation of the numbers 1..4

The summation of the numbers 50..100

Fundamentals of Python: First Programs

Functions Hide Complexity

* Functions serve as abstraction mechanisms is by
hiding complicated details

* For example, consider the previous sum function

— The idea of summing a range of numbers is simple;
the code for computing a summation is not

* A function call expresses the idea of a process to
the programmer

— Without forcing him/her to wade through the complex
code that realizes that idea

Fundamentals of Python: First Programs 6

Functions Support General Methods
with Systematic Variations

* An algorithm is a general method for solving a
class of problems

* The individual problems that make up a class of
problems are known as problem instances
— What are the problem instances of our summation
algorithm?
 Algorithms should be general enough to provide a
solution to many problem instances

— A function should provide a general method with
systematic variations

Fundamentals of Python: First Programs

Functions Support the Division of
Labor

* In a well-organized system, each part does its own
job In collaborating to achieve a common goal

* In a computer program, functions can enforce a
division of labor
— Each function should perform a single coherent task
« Example: Computing a summation

« Each of the tasks required by a system can be
assigned to a function

— Including the tasks of managing or coordinating the
use of other functions

Fundamentals of Python: First Programs

Problem Solving with Top-Down
Design

 Top-down design starts with a global view of the
entire problem and breaks the problem into
smaller, more manageable subproblems

— Process known as problem decomposition

* As each subproblem is isolated, its solution is
assigned to a function

* As functions are developed to solve subproblems,
solution to overall problem is gradually filled out

— Process is also called stepwise refinement

Fundamentals of Python: First Programs

The Design of the Text-Analysis
Program

main
StriNg s
- countSentences
- Int
string —»
o countWords
string —»
- countSyllables
— int y
string —»
- syllablesin
<— Int
3ints 3
fleschindex
— float
3ints —»
gradelevel
< float

[FIGURE 6.1] A structure chart for the text-analysis program
Fundamentals of Python: First Programs

The Design of the Sentence-Generator

Program

main

\\strmg

sentence

string /

wg
verbPhrase

string 7
string T

Tstring

nounPhrase prepositionalPhrase
/ string
string f y\ strin Tstring
g
articles nouns prepositions verbs
Data Pool

[FIGURE 6.2] A structure chart for the sentence generator program

Fundamentals of Python: First Programs

11

The Design of the Doctor Program

main

SLING wi-

stringi

Data Pool

hedges

lstring

< string

reply

SIING

qualifiers

replacements

lstring

<— string

[FIGURE 6.3] A structure chart for the doctor program
Fundamentals of Python: First Programs

changePerson

12

Design with Recursive Functions

* |n top-down design, you decompose a complex
problem into a set of simpler problems and solve
these with different functions

* |In some cases, you can decompose a complex
problem into smaller problems of the same form

— Subproblems can be solved using the same function
* This design strategy is called recursive design
« Resulting functions are called recursive functions

Fundamentals of Python: First Programs 13

Defining a Recursive Function

A recursive function is a function that calls itself

— To prevent function from repeating itself indefinitely,
It must contain at least one selection statement

o Statement examines base case to determine whether
to stop or to continue with another recursive step

 To convert displayRange to a recursive function:

def displayRange(lower, upper):
"""Outputs the numbers from lower to upper."""
while lower <= upper:
print(lower)
lower = lower + 1

— You can replace loop with a selection statement and
assignment statement with a recursive call

Fundamentals of Python: First Programs 14

Defining a Recursive Function
(continued)

 Making displayRange recursive (continued):

def displayRange(lower, upper):
"""Outputs the numbers from lower to upper."""
if lower <= upper:
I print (lower)
displayRange(lower + 1, upper)

* Most recursive functions expect at least one
argument

* Another example: Recursive version of sum

def sﬁﬁ{lnwer, upper) :
"""Returns the sum of the numbers from lower to upper."""
if lower > upper:
return 0
else:
return lower + sum(lower + 1, upper)

Fundamentals of Python: First Programs

15

Tracing a Recursive Function

def sum(lower, upper, margin):
"""Returns the sum of the numbers from lower to upper,
and outputs a trace of the arguments and return values
on each call."""
blanks = " " * margin
print(blanks, lower, upper)
if lower > upper:
print(blanks, 0)
return 0
else:
result = lower + sum(lower + 1, upper, margin + 4)
print(blanks, result)
return result

>>> gum(l, 4, 0)

14
2 4
3 4
4 4
5 4
0
4
7
9
10
10
>>>

Fundamentals of Python: First Programs 16

Using Recursive Definitions to
Construct Recursive Functions

* Recursive functions are frequently used to design
algorithms that have a recursive definition

— A recursive definition consists of equations that state
what a value is for one or more base cases and one
Or more recursive cases

« Example: Fibonacci sequence
11235813

Fib(n) = 1, when n = 1 or n = 2
Fib(n) = Fib(n - 1) + Fib(n - 2), for all n > 2
def fib(n):
"""Returns the nth Fibonacci number."""
if n< 3:
return 1
else:
return fib(n - 1) + fib(n - 2)

Fundamentals of Python: First Programs 17

Recursion In Sentence Structure

 Recursive solutions can often flow from the
structure of a problem

« Example: Structure of sentences in a language

— A noun phrase can be modified by a prepositional
phrase, which also contains another noun phrase

Noun phrase = Article Noun [Prepositional phrase]

def nounPhrase():
"""Returns a noun phrase, which is an article followed
by a noun and an optional prepositional phrase."""
phrase = random.choice(articles) + " " + random.choice (nouns)
prob = random.randint(1l, 4)
if prob == 1:
return phrase + " " + prepositionalPhrase()é |nd|rect recurS|On
else:
return phrase

Fundamentals of Python: First Programs 18

Infinite Recursion

* Infinite recursion arises when programmer fails to
specify base case or to reduce size of problem in a
way that terminates the recursive process

— In fact, the Python virtual machine eventually runs
out of memory resources to manage the process

>>> def runForever(n):
if n > 0:
runForever(n)
else:
runForever(n - 1)

>>> runForever(1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 3, in runForever
RuntimeError: maximum recursion depth exceeded

Fundamentals of Python: First Programs 19

The Costs and Benefits of Recursion

 PVM reserves an area of memory for the call stack

 For each call of a function, the PVM must allocate
on the call stack a stack frame, which contains:

— Values of the arguments
— Return address for the particular function call
— Space for the function call’s return value

« When a call returns, return address is used to locate
the next instruction, and stack frame Is deallocated

« Amount of memory needed for a loop does not grow
with the size of the problem’s data set

Fundamentals of Python: First Programs 20

The Costs and Benefits of Recursion
(continued)

l Top of the stack
4

Call 4 lower

upper

3

call 3 3 lower

a
3 upper
2

Call 2 1”‘”‘;
3 upp

call1 1 lower
3 upper

[FIGURE 6.4] The stack frames for displayRange (1, 3)
Fundamentals of Python: First Programs

Case Study: Gathering Information
from a File System

* Request: Write a program that allows the user to
obtain information about the file system
* Analysis:
— File systems are tree-like structures
— At the top of the tree is the root directory
— Under the root are files and subdirectories

— Each directory in the system except the root lies
within another directory called its parent

— Example of a path (UNIX-based file system):
« /Users/KenLaptop/Book/Chapter6/Chapter6.doc

Fundamentals of Python: First Programs 22

Case Study: Gathering Information
from a File System (continued)

D = directory

F = file

[FIGURE 6.5] The structure of a file system

Fundamentals of Python: First Programs 23

Case Study: Gathering Information
from a File System (continued)

/Users/KenLaptop/Book/Chapter6

1 List the current directory

2 Move up

3 Move down

4 Number of files in the directory
5 Size of the directory in bytes
6 Search for a filename
7 Quit the program
Enter a number:

[HGURE6ﬁ]ﬂmcnmnmndmenunﬂhefilesyspmgmm

— When user enters a number, program runs
command; then, displays CWD and menu again

— An unrecognized command produces an error
message

Fundamentals of Python: First Programs

24

Case Study: Gathering Information
from a File System (continued)

COMMAND WHAT IT DOES

List the current Prints the names of the files and directories in the
working directory current working directory (CWD).

Move up If the CWD is not the root, move to the parent

directory and make it the CWD.

Move down Prompts the user for a directory name. If the name is
not in the CWD, print an error message; otherwise,
move to this directory and make it the CWD.

Number of files in Prints the number of files in the CWD and all of its
the directory subdirectories.

Size of the directory Prints the total number of bytes used by the files in
in bytes the CWD and all of its subdirectories.

Search for a filename Prompts the user for a search string. Prints a list of

all the filenames (mth their paths) that contain the
search string, or “String not found.”

Quit the program Prints a signoff message and exits the program.

[TABLE 6.1] The commands in the £ilesys program

Fundamentals of Python: First Programs

Case Study: Gathering Information
from a File System (continued)
* Design:

function main()
while True
print(os.getcwd())
print (MENU)
Set command to acceptCommand/()
runCommand (command)

if command == QUIT
print("Have a nice day!")
break

function countFiles(path)
Set count to 0
Set lyst to os.listdir(path)
for element in lyst
if os.path.isfile(element)
count += 1
else:
os.chdir(element)
count += countFiles(os.getcwd())
os.chdir("..")
return count

Fundamentals of Python: First Programs

26

Case Study: Gathering Information
from a File System (continued)

TN

Program: filesys.py
Author: Ken

Provides a menu-driven tool for navigating a file system
and gathering information on files.

TN

import os, os.path
puIT = 7"

COMNDS: (lll"I l2l"I l3l"I l4l"I ISII IEI"I l?l}

MENU = """1 List the current directory
2 Move up

3 Move down

4 Number of files in the directory

5 Size of the directory in bytes

6 Search for a filename

7 Quit the program"""

Fundamentals of Python: First Programs

27

Managing a Program’s Namespace

* A program’s namespace Is the set of its variables
and their values

— You can control it with good design principles

Fundamentals of Python: First Programs

28

Module Variables, Parameters, and
Temporary Variables

doctor.py file (module name is doctor):

replacements = {"I":" you ", "e":" you " “I‘L'ly" - YOLII‘" r
i we n : n You n . (1] uS n : n Foull . Ilmine n : n Yﬂ'urS" }
A module variable A parameter name

def changePerson(sentence):
"""Replaces first person pronouns with second person

pronouns.""" —A temporary variable
words = sentence.split()

replyWords = []
for word in words: A method name

replyWords. append(replacements.get (word, word))
return " ".join(replyWords)

 Module variables and temporary variables
receive their values as soon as they are introduced

e Parameters behave like a variable and are
Introduced In a function or method header

— Do not receive a value until the function is called

Fundamentals of Python: First Programs 29

Scope

« Scope: Area in which a name refers to a given
value

— Temporary variables are restricted to the body of the
functions in which they are introduced

— Parameters are invisible outside function definition

— The scope of module variables includes entire module
below point where they are introduced

A function can reference a module variable, but can’t
under normal circumstances assign a new value to it

Fundamentals of Python: First Programs 30

Lifetime

« Variable's lifetime: Period of time when variable
has memory storage associated with it
— When a variable comes into existence, storage is

allocated for it; when it goes out of existence,
storage is reclaimed by the PVM

* Module variables come into existence when
Introduced and generally exist for lifetime of
program that introduces or imports them

« Parameters and temporary variables come into

existence when bound to values during call, but go

out of existence when call terminates

Fundamentals of Python: First Programs

31

Default (Keyword) Arguments

* Arguments provide the function’s caller with the
means of transmitting information to the function

* Programmer can specify optional arguments with
default values in any function definition:

def <function name>(<required args>,

<key-1> = <val-1>, .. <key-n> = <val-n=)

— Following the required arguments are one or more
default or keyword arguments

— When function is called with these arguments,
default values are overridden by caller’s values

Fundamentals of Python: First Programs 32

Default (Keyword) Arguments
(continued)

def repTolInt(repString, base):

def

2>

10

===

===

===

e -

"""Converts the repString to an int in the base

and returns this int."""

decimal = 0

exponent = len(repString) - 1

for digit in repsString:
decimal = decimal + int(digit) * base ** exponent
exponent -= 1

return decimal

repTolnt(repString, base = 2):

repToInt("10", 10)

repToInt("10", 8) # Override the default to here
repToInt("10", 2) # Same as the default, not necessary

repToInt("10") # Base 2 by default

Fundamentals of Python: First Programs

33

Default (Keyword) Arguments
(continued)

* The default arguments that follow can be supplied
In two ways:

— By position
— By keyword

def example(required, optionl = 2, option2 = 3):
print(required, optionl, option2)

>>> example(1l) # Use all the defaults

12 3

>>> example(1l, 10) # Override the first default
1 10 3

>>> example(l, 10, 20) # Override all the defaults

1 10 20

>>> example(l, option2 = 20) # Override the second default
12 20

>>> example(l, option2 = 20, optionl = 10) # Note the order
1 10 20

>>>

Fundamentals of Python: First Programs

34

Higher-Order Functions
(Advanced Topic)

* A higher-order function expects a function and a
set of data values as arguments

— Argument function is applied to each data value and
a set of results or a single data value is returned

* A higher-order function separates task of
transforming each data value from logic of
accumulating the results

Fundamentals of Python: First Programs 35

Functions as First-Class Data Objects

* Functions can be assigned to variables, passed as
arguments, returned as the values of other
functions, and stored in data structures

>>> abs # See what a function looks like
<built-in function abs>

>>> import math

>>> math.sqrt

<built-in function sqgrt>

>>> f = abs # £ is an alias for abs

>>> f # Evaluate f

<built-in function abs>

>>> f(-4) # Apply £ to an argument

4

>>> funcs = [abs, math.sqrt] # Put the functions in a list

>>> funcs

[<built-in function abs>, <built-in function sqrt>]
>>> funcs[1](2) # Apply math.sgrt to 2
1.4142135623730951

Fundamentals of Python: First Programs 36

Functions as First-Class Data Objects
(continued)

« Passing a function as an argument is no different
from passing any other datum:

>>> def example(functionArg, dataArg):
return functionArg(dataArqg)

>>> example(abs, -4)

4

>>> exXample (math.sqgrt, 2)
1.4142135623730951

>>>

Fundamentals of Python: First Programs 37

Mapping

 Mapping applies a function to each value in a
sequence and returns a new sequence of the

results
>>> words = ["231", "20", "-45", "99"]
>>> map(int, words) # Convert all strings to ints
<map object at 0x14cbd90>
>>> words # Original list is not changed
['231', '20"', "-45', '99']
>>> words = list(map(int, words)) # Reset variable to change it

>>> wWords
[231, 20, -45, 99]
>

Fundamentals of Python: First Programs

38

Mapping (continued)

def changePerson(sentence):

def

"""Replaces first person pronouns with second person

pronouns."""

words = sentence.split()

replyWords = []

for word in words:
replyWords.append(replacements.get (word, word))

return " ".join(replyWords)

changePerson(sentence) :
"""Replaces first person pronouns with second person
pronouns."""

def getWord(word):
replacements.get(word, word)

return " ".join(map(getWord, sentence.split())

Fundamentals of Python: First Programs

39

Filtering

* When filtering, a function called a predicate is
applied to each value in a list

— If predicate returns True, value is added to a new
list; otherwise, value is dropped from consideration

>>> def odd(n): return n % 2 == 1
>>> list(filter(odd, range(10)))

(1, 3, 5, 7, 9]
===

Fundamentals of Python: First Programs

40

Reducing

 When reducing, we take a list of values and
repeatedly apply a function to accumulate a single
data value

>>> from functools import reduce
>>> def add(x, y): return x + y

>>> def multiply(x, y): return x * y

>>> data = [1, 2, 3, 4]
>>> reduce(add, data)

10

>>> reduce(multiply, data)
24

>>>

Fundamentals of Python: First Programs

41

Using 1ambda to Create Anonymous
Functions

A lambda is an anonymous function

— When the 1lambda is applied to its arguments, its
expression is evaluated and its value is returned

lambda <argname-1, ..., argname-n>: <expression>

>>> data = [1, 2, 3, 4]

>>> reduce(lambda x, y: X + y, data) # Produce the sum

10

>>> reduce(lambda x, y: X * y, data) # Produce the product
24

def sum(lower, upper):

"""Returns the sum of the numbers from lower to upper."""
if lower > upper:

return 0
else:
return reduce(lambda %, y: X + vy,

range(lower, upper + 1))

Fundamentals of Python: First Programs 42

Creating Jump Tables

 Ajump table is a dictionary of functions keyed by
command names

def runCommand (command) : # How simple can it get?
jumpTable[command] ()

The functions named insert, replace, and remove
are defined earlier

jumpTable = {}

jumpTable['1'] = insert
jumpTable['2'] = replace
jumpTable['3'] = remove

Fundamentals of Python: First Programs

43

Summary

* A function serves as abstraction mechanism and
eliminates redundant patterns of code

« Top-down design is strategy that decomposes
complex problem into simpler subproblems and
assigns their solutions to functions

« A structure chart is diagram of relationships among
cooperating functions

* Recursive design is special case of top-down
design, in which complex problem is decomposed
iInto smaller problems of the same form

Fundamentals of Python: First Programs 44

Summary (continued)

A recursive function is a function that calls itself
— Parts: Base case and recursive step
— Can be computationally expensive

* Programmers must avoid infinite recursion

* Program namespace structured in terms of module
variables, parameters, and temporary variables

e Scope can be used to control the visibility of names
IN a namespace

* The lifetime of a variable is duration of program
execution during which it uses memory storage

Fundamentals of Python: First Programs 45

Summary (continued)

* Functions are first-class data objects

« Higher-order functions can expect other functions
as arguments and/or return functions as values

* A mapping function expects a function and a list of
values as arguments

* A predicate is a Boolean function

A filtering function expects a predicate and a list of
values as arguments

* A reducing function expects a function and a list of
values as arguments

Fundamentals of Python: First Programs 46

