
Quick Sort

Modifications By Mr. Dave Clausen
Updated for Python

Quicksort

There are better sorting algorithms that are O(n log n).
Quicksort is one of the simplest.
The general idea behind quicksort is this:

Break an array into two parts

Move elements around so that all the larger values are in one end and
all the smaller values are in the other.

Each of the two parts is then subdivided in the same manner, and so on
until the subparts contain only a single value, at which point the array is
sorted.

Quicksort

To illustrate the process, suppose an unsorted array,
called a, looks like:

Quicksort
Phase 1

1. If the length of the array is less than 2, then done.
2. Locate the value in the middle of the array and

call it the pivot. The pivot is 7 in this example.

3. Tag the elements at the left and right ends of the
array as i and j, respectively.

Quicksort

4. While a[i] < pivot value, increment i.
While a[j] >= pivot value, decrement j:

Quicksort

5. If i > j then
end the phase

else
interchange a[i] and a[j]:

Quicksort

6. Increment i and decrement j.

If i > j then end the phase:

Quicksort

7. Repeat step 4, i.e.,

While a[i] < pivot value, increment i

While a[j] >= pivot value, decrement j:

Quicksort

8. Repeat step 5, i.e.,

If i > j then

end the phase

else

interchange a[i] and a[j]:

Quicksort

9. Repeat step 6, i.e.,

Increment i and decrement j.

If i < j then end the phase:

Quicksort

10. Repeat step 4, i.e.,

While a[i] < pivot value, increment i

While a[j] >= pivot value, decrement j:

Quicksort

11. Repeat step 5, i.e.,

If i > j then

end the phase

else

interchange a[i] and a[j].

Quicksort

This ends the phase.

Split the array into the two subarrays a[0..j] and a[i..10].

For clarity, the left subarray is shaded.

Notice that all the elements in the left subarray are less than or
equal to the pivot, and those in the right are greater than or equal.

Quicksort

Phase 2 and Onward

Reapply the process to the left and right subarrays and
then divide each subarray in two and so on until the
subarrays have lengths of at most one.

Quicksort

Complexity Analysis

During phase 1, i and j moved toward each other.

At each move, either an array element is compared to the
pivot or an interchange takes place.

As soon as i and j pass each other, the process stops.

Thus, the amount of work during phase 1 is proportional to
n, the array's length.

Quicksort

The amount of work in phase 2 is proportional to the left
subarray's length plus the right subarray's length, which
together yield n.

When these subarrays are divided, there are four pieces
whose combined length is n, so the combined work is
proportional to n yet again.

At successive phases, the array is divided into more pieces,
but the total work remains proportional to n.

Quicksort

To complete the analysis, we need to determine how many
times the arrays are subdivided.

When we divide an array in half repeatedly, we arrive at a
single element in about log2 n steps.

Thus the algorithm is O(n log n) in the best case.

In the worst case, the algorithm is O(n2).

Quicksort

Implementation

The quicksort algorithm can be coded using either an
iterative or a recursive approach.

The iterative approach also requires a data structure called
a stack.

The following example implements the quicksort algorithm
recursively:

Quicksort Python
Translated from Java Code

Big O Notation for Quick Sort

Big O notation for the average

case using Quick Sort is

O(n log n)

