Quick Sort

Modifications By Mr. Dave Clausen
Updated for Python

Quicksort

There are better sorting algorithms that are O(n log n).
Quicksort is one of the simplest.

The general idea behind quicksort is this:
Break an array into two parts

Move elements around so that all the larger values are in one end and
all the smaller values are in the other.

Each of the two parts is then subdivided in the same manner, and so on

until the subparts contain only a single value, at which point the array is
sorted.

HEBOHEEEITGE

(5 [12|3]nj2 720108]4]9
|]

(5 |12|3|nj2]7]20/0]/8[4]9
|]

HEIEFIFRFEIFIEEFIEE
i j

sl4fsfulafr/nfwjsjnfy
i |

sjefsjuj2]1/0/wjs/nR]9
]

sl4fafzf2fujnjnjs|n]9
]

Slefsf7l2fujnfw|sfn]9
Il

Sl4f3frl2jujn[w|s w9
|

Quicksort

11. Repeat step 5, i.e.,
If I >] then
end the phase
else
interchange a[i] and afj].

HOBNBANNNn

Quicksort

Phase 2 and Onward

Reapply the process to the left and right subarrays and
then divide each subarray in two and so on until the
subarrays have lengths of at most one.

Quicksort

Complexity Analysis
During phase 1, I and | moved toward each other.

At each move, either an array element is compared to the
pivot or an interchange takes place.

As soon as | and | pass each other, the process stops.

Thus, the amount of work during phase 1 is proportional to
n, the array's length.

Quicksort

The amount of work in phase 2 is proportional to the left

subarray's length plus the right subarray's length, which
together yield n.

When these subarrays are divided, there are four pieces
whose combined length is n, so the combined work is
proportional to n yet again.

At successive phases, the array is divided into more pieces,
but the total work remains proportional to n.

Quicksort

To complete the analysis, we need to determine how many
times the arrays are subdivided.

When we divide an array in half repeatedly, we arrive at a
single element in about log, n steps.

Thus the algorithm is O(n log n) in the best case.

In the worst case, the algorithm is O(n?).

Quicksort

Implementation

The quicksort algorithm can be coded using either an
iterative or a recursive approach.

The iterative approach also requires a data structure called
a stack.

The following example implements the quicksort algorithm
recursively:

Sidef quickSort (listCopy, left, right):
#PRecursive Version
if left >= right:
return

1 = left
1 = right
pivotvalue = listCopy[{left + right) /f/ 2]
while 1 < 7:
- while listCopy[i] < pivotvalue:
i+=1

while pivotvalue < listCopyl[]]:
j-=1

if 1 <= 7:
temp = listCopyl[il]
listCopyl[i]l = listCopyl[]]

Big O Notation for Quick Sort

Big O notation for the average
case using Quick Sort Is
O(n log n)

