
The Sequential Search

(Linear Search)

Mr. Dave Clausen

La Cañada High School

2/21/2014 Mr. Dave Clausen 2

The Sequential Search

Description

The Sequential (or Linear) Search examines

the first element in the list and then

examines each “sequential” element in the

list (in the order that they appear) until a

match is found. This match could be a

desired word that you are searching for, or

the minimum number in the list.

2/21/2014 Mr. Dave Clausen 3

The Sequential Search

Variations
Variations on this include: searching a sorted list

for the first occurrence of a data value, searching a

sorted list for all occurrences of a data value (or

counting how many matches occur: inventory), or

searching an unsorted list for the first occurrence

or every occurrence of a data value.

You may indicate that a match has been found, the

number of matches that have been found, or the

indices where all the matches have been found.

2/21/2014 Mr. Dave Clausen 4

Sequential Search Algorithm

Set index to 0

while index < length

if list[index] is equal to target then

return index

else

Increment the index by 1

return -1

2/21/2014 Mr. Dave Clausen 5

Sequential Search Python

2/21/2014 Mr. Dave Clausen 6

Sequential Search Python:

while loop

2/21/2014 Mr. Dave Clausen 7

Sequential Search Java

int Sequential_Search(int target, int[] list, int length)

{

int index = 0;

while (index < length)

if (list[index] = = target)

return index;

else

index++;

return -1;

}

2/21/2014 Mr. Dave Clausen 8

Sequential Search Java: for loop

int Linear_Search (int[] list, int searchValue, int length)

{

for (int index = 0; index < length; index ++)

if (list[index] == searchValue)

return index ;

return -1;

}

2/21/2014 Mr. Dave Clausen 9

Sequential Search C + +

int search(int target, const apvector<int> &v)

{

int index = 0;

while (index < v.length())

if (v[index] = = target)

return index;

else

++index;

return -1;

}

2/21/2014 Mr. Dave Clausen 10

A More Efficient Sequential

Search Algorithm
Set index to 0 (zero)

Set found to false

While index < length and not found do

If list[index] is equal to target then

set found to be true

Else

Increment the index by 1 (one)

If found then

return index

Else

Return -1 (negative one)

2/21/2014 Mr. Dave Clausen 11

int Sequential_Search(int target, int[] list, int length)

{

int index = 0;

boolean found = false;

while((index < length) && ! found)

if (list[index] = = target)

found = true;

else

index++;

if (found)

return index;

else

return -1

}

A Sequential Search Java

2/21/2014 Mr. Dave Clausen 12

int Sequential_Search(int target, apvector <int> &list, int length)

{

int index = 0;

bool found = false;

while((index < length) && ! found)

if (list[index] = = target)

found = true;

else

++index;

if (found)

return index;

else

return -1

}

A Sequential Search C + +

2/21/2014 Mr. Dave Clausen 13

The Sequential Search Java

Variation #1
If the list is sorted, we can improve this code by

adding the following extended if statement:

if (list[index] = = target)

found = true;

else if (list[index] > target) //target is not in list

index = length;

else

index++;

2/21/2014 Mr. Dave Clausen 14

The Sequential Search C + +

Variation #1
If the list is sorted, we can improve this code by

adding the following extended if statement:

if (list[index] = = target)

found = true;

else if (list[index] > target) //target is not in list

index = length;

else

index++;

2/21/2014 Mr. Dave Clausen 15

The Sequential Search Java

Variation #2
Whether the list is sorted or not, we can return the

number of occurrences of the target in the list:

int Occurrences_Of (int target, int [] list, int length)

{

int count = 0;

for(int index = 0; index < length; index++)

if (list[index] = = target)

count++;

return count;

}

2/21/2014 Mr. Dave Clausen 16

The Sequential Search C + +

Variation #2
Whether the list is sorted or not, we can return the

number of occurrences of the target in the list:

int Occurrences_Of (int target, const apvector <int> &list)

{

int count = 0;

for(int index = 0; index < list.length(); ++index)

if (list[index] = = target)

+ + count;

return count;

}

2/21/2014 Mr. Dave Clausen 17

The Sequential Search Java

Variation #3
Whether the list is sorted or not, we can return the
indices of occurrences of the target in the list:

void Indices_Of (int target, int [] list, int length)

{

for(int index = 0; index < length; index++)

if (list[index] = = target)

System.out.println(“” + target + “ located
at index # “ + index);

}

2/21/2014 Mr. Dave Clausen 18

The Sequential Search C + +

Variation #3
Whether the list is sorted or not, we can return the

indices of occurrences of the target in the list:

void Indices_Of (int target, const apvector<int>

&list)

{

for(int index = 0; index < list.length(); ++index)

if (list[index] = = target)

cout<< target << “ located at index # “

<<index<<endl;

}

2/21/2014 Mr. Dave Clausen 19

6

2

1

3

5

4

We start by searching for the

target at the first element in the

List and then proceed to

examine each element in the

order in which they appear.

A Sequential Search Example

Target ?

2/21/2014 Mr. Dave Clausen 20

6

2

1

3

5

4

Target ?

A Sequential Search Example

2/21/2014 Mr. Dave Clausen 21

6

2

1

3

5

4

Target ?

A Sequential Search Example

2/21/2014 Mr. Dave Clausen 22

6

2

1

3

5

4

A Sequential Search Example

Target ?

2/21/2014 Mr. Dave Clausen 23

6

2

1

3

5

4

A Sequential Search Example

Target !

Once the target data item has

been found, you may return a

Boolean true, or the index

where it was found.

2/21/2014 Mr. Dave Clausen 24

Big - O Notation

Big - O notation is used to describe the efficiency

of a search or sort. The actual time necessary to

complete the sort varies according to the speed of

your system. Big - O notation is an approximate

mathematical formula to determine how many

operations are necessary to perform the search or

sort. The Big - O notation for the Sequential

Search is O(n), because it takes approximately n

passes to find the target element.

