The Sequential Search
(Linear Search)

Mr. Dave Clausen
La Canada High School

The Sequential Search
Description

The Sequential (or Linear) Search examines
the first element in the list and then
examines each “sequential” element 1n the
list (in the order that they appear) until a
match Is found. This match could be a
desired word that you are searching for, or
the minimum number in the list.

2/21/2014 Mr. Dave Clausen 2

The Sequential Search
Variations

Variations on this include: searching a sorted list
for the first occurrence of a data value, searching a
sorted list for all occurrences of a data value (or
counting how many matches occur: inventory), or
searching an unsorted list for the first occurrence
or every occurrence of a data value.

You may Indicate that a match has been found, the
number of matches that have been found, or the
Indices where all the matches have been found.

2/21/2014 Mr. Dave Clausen 3

Sequential Search Algorithm

Setindexto 0
while index < length
If list[index] is equal to target then
return index
else
Increment the index by 1
return -1

2/21/2014 Mr. Dave Clausen

Sequential Search Python

def 1in

position = 0

while position < len(listCopy):
if target == listCopyl[position]:
return position
position +=1
return -1

2/21/2014 Mr. Dave Clausen 5

Sequential Search Python:
while loop

if target in listCopy:

index = 0

while index < len(listCopy):
if listCopylindex]==target:
print {target, "found at index: ", index)
index+=1

else:
return -1

2/21/2014 Mr. Dave Clausen 6

Sequential Search Java

Int Sequential _Search(int target, int[] list, int length)
{
Int Index = O;
while (index < length)
If (list[index] = = target)
return index;
else
Index++;
return -1;

}

2/21/2014 Mr. Dave Clausen 7

Sequential Search Java: for loop

Int Linear_Search (int[] list, int searchValue, int length)
{
for (int index = 0; Index < length; index ++)
If (list[index] == searchValue)
return index ;
return -1;

¥

2/21/2014 Mr. Dave Clausen

Sequential Search C + +

Int search(int target, const apvector<int> &V)
{
Int Index = O;
while (index < v.length())
If (v[index] = = target)
return index;
else
++index;
return -1;

}

2/21/2014 Mr. Dave Clausen

A More Efficient Sequential
Search Algorithm

Set index to O (zero)
Set found to false
While index < length and not found do
If list[index] is equal to target then
set found to be true
Else
Increment the index by 1 (one)
If found then
return index
Else
Return -1 (negative one)

2/21/2014 Mr. Dave Clausen

A Sequential Search Java

Int Sequential_Search(int target, int[] list, int length)
{
Int index = O;
boolean found = false;
while((index < length) && ! found)
If (list[index] = = target)
found = true;
else
Index++;
If (found)
return index;
else
return -1

}

2/21/2014 Mr. Dave Clausen

11

A Sequential Search C + +

int Sequential_Search(int target, apvector <int> &list, int length)
{
Int index = O;
bool found = false;
while((index < length) && ! found)
If (list[index] = = target)
found = true;
else
++index;
If (found)
return index;
else
return -1

}

2/21/2014 Mr. Dave Clausen

12

The Sequential Search Java
Variation #1

If the list Is sorted, we can improve this code by
adding the following extended If statement:

If (list[index] = = target)
found = true;
else If (list[index] > target) //target Is not In list
Index = length;
else
Index++;

2/21/2014 Mr. Dave Clausen 13

The Sequential Search C + +
Variation #1

If the list Is sorted, we can improve this code by
adding the following extended If statement:

If (list[index] = = target)
found = true;
else If (list[index] > target) //target is not in list
Index = length;
else
Index++;

2/21/2014 Mr. Dave Clausen

14

The Sequential Search Java
Variation #2

Whether the list 1s sorted or not, we can return the
number of occurrences of the target in the list:

Int Occurrences_Of (int target, int [] list, int length)
{
Int count = 0;
for(int index = 0; index < length; index++)
If (list[index] = = target)
count++;
return count;

¥

2/21/2014 Mr. Dave Clausen 15

The Sequential Search C + +
Variation #2

Whether the list 1s sorted or not, we can return the
number of occurrences of the target in the list:

Int Occurrences_Of (int target, const apvector <int> &list)

1
Int count = 0;
for(int index = 0; index < list.length(); ++index)
If (list[index] = = target)
+ + count;
return count;

¥

2/21/2014 Mr. Dave Clausen 16

The Sequential Search Java
Variation #3

Whether the list Is sorted or not, we can return the
Indices of occurrences of the target in the list:

vold Indices Of (int target, int [] list, int length)
{

for(int index = 0; Index < length; index++)
If (list[index] = = target)
System.out.println(*’ + target + * located
at index # ““ + index);

}

2/21/2014 Mr. Dave Clausen 17

The Sequential Search C + +
Variation #3

Whether the list is sorted or not, we can return the
Indices of occurrences of the target in the list:

void Indices_Of (int target, const apvector<int>
&list)

{
for(int index = 0; index < list.length(); ++index)
If (list[index] = = target)

cout<< target << ““ located at index # *
<<index<<endl;

}

2/21/2014 Mr. Dave Clausen 18

A Sequential Search Example

Target ?

We start by searching for the

target at the first element in the

List and then proceed to
examine each element in the

order in which they appear.

2/21/2014 Mr. Dave Clausen

19

A Sequential Search Example

Target ?

2/21/2014 Mr. Dave Clausen

20

A Sequential Search Example

Target ?

2/21/2014 Mr. Dave Clausen

21

A Sequential Search Example

Target ?

2/21/2014 Mr. Dave Clausen

22

A Sequential Search Example

Once the target data item has
been found, you may return a
Boolean true, or the index
where it was found.

Target !

2/21/2014 Mr. Dave Clausen 23

Big - O Notation

Big - O notation Is used to describe the efficiency
of a search or sort. The actual time necessary to
complete the sort varies according to the speed of

your system. Big - O notation is an approximate
mathematical formula to determine how many
operations are necessary to perform the search or
sort. The Big - O notation for the Sequential
Search i1s O(n), because It takes approximately n
passes to find the target element.

2/21/2014 Mr. Dave Clausen

24

