 Chapter 11: Sequences and Series

11-1 Types of Sequences
Sequence: is an ordered set of numbers which could be defined as a function whose domain (x-values) consists of consecutive positive integers and the corresponding value is the range (y-values) of the sequence.

Term number: is an ordered set of numbers which could be defined as a function whose domain (x-values) consists of consecutive positive integers.
Term: the corresponding value (the range y-value) of the sequence

Finite: a sequence with a limited number of terms  

Infinite: a sequence with an unlimited number of terms
Arithmetic sequence:  a sequence in which a constant d (common difference) can be added to each term to get the next term.

Common difference: the constant difference, usually denoted as d
Geometric Sequence:  a sequence in which a constant r can be multiplied by each term to get the next term

Common ratio:  the constant ratio, usually denoted by r.
11-2 Arithmetic sequence: 
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Arithmetic Mean: the average between 2 numbers 
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11-3 Geometric Sequence:
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Geometric Mean: the term between two given terms of a geometric sequence as defined by the following formula:
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11-4 Series and Sigma Notation

Arithmetic series: The sum of the terms of an arithmetic sequence.

Geometric Series: The sum of the terms of a geometric sequence.

Sigma: A series can be written in a shortened form using the Greek letter 
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11-5 Sums of arithmetic and geometric series

Sum of an Arithmetic series: 
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Sum of a geometric series:
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11-6 Infinite Geometric Series

Theorem: an infinite geometric series is convergent and has a sum “S” if and only if its common ratio, r meets the following condition: | r | < 1

If our infinite series is convergent (| r | < 1), we can calculate its sum by the formula: 
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11-7 Binomial Expansions and Powers of Binomials

Binomial expansion: 
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You can use Pascal’s Triangle to find the coefficients of the expansion.

11-8 The General Binomial Expansion

The Binomial Theorem: for any binomial (a + b) and any whole number n, then 
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Combinations:
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Factorial:
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To find the rth term of a binomial expansion raised to the nth power, use the following formula:
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Which is the same as:
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Thanks to my T.A., Jovanna a.k.a. “JT” for creating this review sheet.
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