Chapter 11: Sequences and Series

	Arithmetic	Note:
Sequence	$t_n = t_1 + (n-1)d$	Arithmetic Sequence
Series (Find the sum)	$S_n = \frac{n(t_1 + t_n)}{2}$	When you know the first and last term.
	$s_n = \frac{n}{2} [2t_1 + (n-1)d]$	When you know the first term and the common difference.
	Geometric	Note:
Sequence	$t_n = t_1 \bullet r^{n-1}$	Geometric Sequence
Series (Find the sum)	$s_n = \frac{t_1(1-r^n)}{1-r}$	A finite Geometric Series (a limited number of terms, or Partial Sum)
	$S = \frac{t_1}{1 - r}$	An infinite Geometric Series, if our infinite series is convergent (r < 1)

Binomial Expansion

To find all terms in a Binomial Expansion, use:

$$(a+b)^{n}_{a}$$

$${}_{n}C_{0}a^{n} + {}_{n}C_{1}a^{n-1}b + {}_{n}C_{2}a^{n-2}b^{2} + {}_{n}C_{3}a^{n-3}b^{3} + \dots + {}_{n}C_{n}b^{n}$$

To find the r^{th} term of a binomial expansion raised to the n^{th} power, use the following formula:

$$\binom{n}{r} =_{n} C_{r} = \frac{n!}{(n-r)!r!}$$