Chapter 11: Sequences and Series | | Arithmetic | Note: | |--------------------------|-------------------------------------|---| | Sequence | $t_n = t_1 + (n-1)d$ | Arithmetic
Sequence | | Series
(Find the sum) | $S_n = \frac{n(t_1 + t_n)}{2}$ | When you know the first and last term. | | | $s_n = \frac{n}{2} [2t_1 + (n-1)d]$ | When you know the first term and the common difference. | | | Geometric | Note: | | Sequence | $t_n = t_1 \bullet r^{n-1}$ | Geometric
Sequence | | Series
(Find the sum) | $s_n = \frac{t_1(1-r^n)}{1-r}$ | A finite Geometric
Series (a limited
number of terms, or
Partial Sum) | | | $S = \frac{t_1}{1 - r}$ | An infinite Geometric Series, if our infinite series is convergent (r < 1) | ## **Binomial Expansion** To find all terms in a Binomial Expansion, use: $$(a+b)^{n}_{a}$$ $${}_{n}C_{0}a^{n} + {}_{n}C_{1}a^{n-1}b + {}_{n}C_{2}a^{n-2}b^{2} + {}_{n}C_{3}a^{n-3}b^{3} + \dots + {}_{n}C_{n}b^{n}$$ To find the r^{th} term of a binomial expansion raised to the n^{th} power, use the following formula: $$\binom{n}{r} =_{n} C_{r} = \frac{n!}{(n-r)!r!}$$