Chapter 15

15-1 Presenting Statistical Data

Frequency distribution: a table that shows how many times each data item occurs.
Histogram: a bar graph displaying a frequency distribution
Stem and leaf plot: A way of displaying the data in a frequency distribution.
Statistics: the methods used to describe a set of data.
Mode: the number that occurs most frequently
Median: the middle number in a distribution (which must be sorted in order) or the mean of the two middle numbers
Mean: the arithmetic average of the numbers in a deviation of a distribution. The sum of all the data items divided by the number of data items.

15-2 Analyzing statistical Data Part 1

First quartile: the median of the lower half of the data
Third quartile: the median of the upper half of the data

\[Q_1 = \text{The median between the minimum and the median} \]
\[Q_3 = \text{The median between the median and the maximum} \]

Range = Maximum – Minimum

Box and whisker plot: is used to show the median, the first and third quartiles, and the range of a distribution.

15-2 Analyzing Statistical Data part 2

Variance: one of the statistics used to measure the dispersion or “spread” of the data.
Standard deviation: the other statistic used to measure the dispersion or “spread” of the data. (The square root of the variance.)

\[\text{Mean} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

\[\text{Variance} = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n} \]
Variance = \[\sigma^2 = \frac{\sum_{i=1}^{n} (\bar{x} - x_i)^2}{n} \]

Standard deviation = \[\sigma = \sqrt{\frac{\sum_{i=1}^{n} (\bar{x} - x_i)^2}{n}} \]

\[\sigma = \sqrt{\frac{\text{sum of the squares of the deviations from the mean}}{\text{number of elements in the distribution}}} = \sqrt{\text{variance}} \]

Statistical Symbols and Variables:
- \(\bar{x} \): The mean of the x values
- \(\sum_{i=1}^{n} x_i \): The sum of the x values
- \(\sigma^2 \): The variance of the x values
- \(n \): The number of elements in the distribution

15-5 Fundamental Counting Principles
Outcome: the result
Event: a subset of outcomes
Compound event: several events which occur together

The Fundamental Counting Principle
In a compound event in which the first event may occur in \(n_1 \) ways, the second event may occur in \(n_2 \) ways, etc. The \(k^{th} \) event may occur in the \(n_k \) different ways, so the total number of ways the compound event may occur is:
Mutually exclusive choices: you can do one or the other but not both at the same time. The outcome of mutually exclusive choices is the **SUM** of each outcome.

15-6 Permutations (order, arrange)

Permutation: An arrangement of the elements of a set of definite order.

Ordered Arrangement: A permutation of a set of objects

\[n \, P_n = n! \]

\[n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1 \]

\[n \, P_r = \frac{n!}{(n-r)!} \]

\[P = \frac{n!}{n_1! \cdot n_2! \ldots} \quad \text{Where objects } n_1, n_2, \text{ etc., are repeated objects.} \]

15-7 Combinations (choose, select)

The number of combinations of a set of \(n \) objects taken \(r \) at a time is:

\[\binom{n}{r} = n \, C_r = \frac{n!}{r! \cdot (n-r)!} \]