10-5 Laws (Properties) of Logarithms (Day 2) Page 473

Alg. 2 Standard 14.0 Students understand and use the properties of logarithms to simplify logarithmic numeric expressions and to identify their approximate values.

Law 1) For any positive numbers x and y, where a is any positive integer where a $\neq 1$

Law 2) For any positive number x, any number p, and any logarithm base a,

Law 3) For any positive numbers x, y and any logarithm base a,

If $\log_a 5 \approx 0.67$ and $\log_a 7 \approx 0.81$, find $\log_a 25$

Strategy for solving this type of problem:

1) If you are given the base, use that information to find any known values. For example:

$$\log_3 1 = 0$$
, $\log_3 3 = 1$, $\log_3 9 = 2$, etc.

2) Determine if the number they are asking you to take the log of can be calculated by *multiplying* or *dividing* any of the numbers given, or by *raising* any of the numbers (or bases) given *to a power*. For example:

$$\log_a 175 = \log_a \left(5^2 \cdot 7\right)$$

If $\log_a 5 \approx 0.67$ and $\log_a 7 \approx 0.81$, find the following:

1)
$$\log_a 25 = \log_a 5^2 = 2 \log_a 5 \approx 2(0.67)$$

 ≈ 1.34

2)
$$\log_a 35 = \log_a (5.7) = \log_a 5 + \log_a 7$$

 $\sim 0.67 + 0.81 \approx (1.48)$

3)
$$\log_{a_{5}}^{7} = \log_{a_{1}} 7 - \log_{a_{1}} 5 \approx 0.81 - 0.67$$

4)
$$\log_a 175 = \log_a (5^2.7) = \log_a 5^3 + \log_a 7$$

$$= 2 \log_a 5 + \log_a 7$$

$$\approx 2(0.67) + 0.81$$

$$\approx 1.34 + 0.81$$

$$\approx 2.15$$

5)
$$\log_a 1 = \bigcirc$$

6)
$$\log_a \sqrt{35} = \log_a 35^{\frac{1}{2}} = \frac{1}{2} \log_a 35^{\frac{1}{2}} = \frac{1}{2} \log_a 35^{\frac{1}{2}} = \frac{1}{2} \log_a 35^{\frac{1}{2}} = \frac{1}{2} \log_a 5 + \log_a 7)$$

$$= \frac{1}{2} \log_a (5.7) = \frac{1}{2} (\log_a 5 + \log_a 7)$$

$$\approx \frac{1}{2} (0.67 + 0.81)$$

$$\approx \frac{1}{2} (1.48)$$

$$\approx \frac{1}{2} (1.48)$$

7) $\log_a 12$ Can't be simplified unless we know the base. 12=5+7 which doesn't involve multiplication, division or exponents.

8)
$$\log_a \frac{49}{25} = \log_a 49 - \log_a 25$$

= $\log_a 7^2 - \log_a 5^2$
= $2\log_a 7 - 2\log_a 5$
 $\approx 2(0.81) - 2(0.67)$
 $\approx 1.62 - 1.34$
 ≈ 0.28