Alg. 2 Standard 12.0 Students know the laws of fractional exponents, understand exponential functions, and use these functions in problems involving exponential growth and decay.

Objective: To use exponential and logarithmic functions to solve growth and decay problems.

Doubling-Time Growth Formula:
If a population of size \(n \) doubles every \(d \) years (or hours, or days, or any other unit of time), then the number \(N \) in the population at time \(t \) is given using the following formula:

\[
N = n \cdot 2^{\frac{t}{d}}
\]
Ex 1) A certain bacteria population doubles in size every 12 hours. If we start with 2 bacteria, how many bacteria will we have after 2 days (48 hours)?

\[N = n \cdot 2^{\frac{t}{12}} \]

\[N = 2 \cdot 2^{\frac{48}{12}} \]

\[N = 2 \cdot 2^4 \]

\[N = 2^5 \]

\[N = 32 \]

Ex 2) A certain bacteria population doubles in size every 12 hours. By how much will it grow in 2 days (48 hours)?

\[N = n \cdot 2^{\frac{t}{12}} \]

\[N = n \cdot 2^{\frac{48}{12}} \]

\[N = n \cdot 2^4 \]

\[N = 16n \]

The population grows by a factor of 16 in 2 days.
Half-Life Decay Formula
If an amount N has a half-life h, then the amount remaining at time t is represented by the formula:

$$n = N \left(\frac{1}{2} \right)^{t/h}$$

N N_0

Ex 3) The half-life of carbon-14 is 5730 years. How much of a 10.0 mg sample will remain after 4500 years?

$$n = 10.0 \left(\frac{1}{2} \right)^{4500/5730}$$

$$n = 10.0 \left(\frac{1}{2} \right)^{0.7853}$$

$$n = 10.0 \left(0.5802 \right)$$

$$n = 5.802 \text{ mg}$$
Solution 2

\[\log N = \log 10.0 + \frac{4500}{5730} \log 0.5 \]

\[\log N = 1 + (0.7853)(-0.3010) \]

\[\log N = 0.7636 \]

\[N = 5.80 \]

Recall the formula for **Simple Interest** from previous math classes:

\[I = P \cdot R \cdot T \quad \text{and} \quad A = P + I \]

Where \(I \) represents **interest**, \(P \) represents **principal**, \(T \) is **time** (usually in years), and \(A \) is the total **amount**.
Ex 4) If $1000 is invested at 3% for a period of 5 years, how much interest was earned? What is the total amount?

\[I = P \cdot R \cdot T \]

\[I = (1000)(0.03)(5) \]

\[I = \$150 \]

\[A = P + I \]

\[A = 1000 + 150 \]

\[A = \$1150 \]

Compound Interest
If an amount \(P \) (called the principal) is invested at an annual interest rate \(r \) (expressed as a decimal) compounded \(n \) times a year, then in \(t \) years the investment will grow to an amount \(A \) using this formula.

\[A = P \left(1 + \frac{r}{n}\right)^{nt} \]

\[I = A - P \]
Ex 5) How long will it take for an investment of $1000 to triple in value if it is invested at an annual rate of 12% compounded quarterly?

Let $P = 1000$, $A = 3000$, $r = 0.12$, and $n=4$.

$$3000 = \frac{1000}{1000} \left(1 + \frac{0.12}{4}\right)^{4t}$$

$$\frac{3000}{1000} = \left(1.03\right)^{4t}$$

$$3 = \left(1.03\right)^{4t}$$

$$\log 3 = \log \left(1.03\right)^{4t}$$

$$\log 3 = 4t \log 1.03$$

$$4 \log 1.03$$

$$4 \log 1.03$$

$$t = \frac{\log 3}{4 \log 1.03}$$
\[t = \frac{0.4771}{\frac{1}{4}(0.0128)} \]

\[t = \frac{0.4771}{0.0512} \]

\[t \approx 9.3 \text{ years} \]