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If an infinite series approaches some limit as the number of
terms n becomes very large, that limit is defined to be the sum
of the series. If an infinite series has a sum it is said to
converge or to be convergent.

Theorem: An infinite geometric series is convergent and has
asum S if and only if it's common ratio, r meets the following
condition: | r| <1

Consider the following geometric series:
2+4+8+16+32+64+...

As the number of terms, 1, gets larger. cach term gt larger so that eventually
Jarge , the term approache: “The sum of this series also
approaches infinity and is not convergent.

As we can see the common ratio r=2 and | 2 | is not less than 1.
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The more terms we add to our partial sums above, the closer

the series "approaches a limit" of 1.
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its sum by the formula:
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Do the following geometric series have a sum? If so, find the
sum:
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=5, |slel is Fa\se
This series does NOT have a sum.
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This series does NOT have a sum.
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If an infinite series approaches some limit as the number of
terms n becomes very large, that limit is defined to be the sum
of the series. If an infinite series has a sum it is said to
converge or to be convergent.

Theorem: An infinite geometric series is convergent and has
asum S if and only if it's common ratio, r meets the following
condition: | r| <1

Consider the following geometric series:
2+4+8+16+32+64+...

As the number of terms, 1, gets larger. cach term gt larger so that eventually
Jarge , the term approache: “The sum of this series also
approaches infinity and is not convergent.

As we can see the common ratio r=2 and | 2 | is not less than 1.




[image: image6.png]Consider the following geometric series:

1

11 1 1 1 1 1 1 1
—t—t ottt —F——t——t—— ..+
2 4 8 16 32 64 128 25 512 2%
5-1
2
g=1.1.3
2 4 4
g=Ls1.17
274'8 38
g=lpl L LI
24816 16
1.1.1.1 11023

S =—+—+—+—+...+ =
2 4 8 16 1024 1024

The more terms we add to our partial sums above, the closer

the series "approaches a limit" of 1.
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