11-6 Infinite Geometric Series Page 531

If an infinite series approaches some limit as the number of terms *n* becomes very large, that limit is defined to be the sum of the series. If an infinite series has a sum it is said to converge or to be **convergent**.

Theorem: An infinite geometric series is **convergent** and has a sum S if and only if it's common ratio, r meets the following condition: |r| < 1

Consider the following geometric series:

$$2+4+8+16+32+64+...$$

As the number of terms, n, gets larger, each term gets larger so that eventually for some large n, the term approaches infinity. The sum of this series also approaches infinity and is not convergent.

As we can see the common ratio r = 2 and |2| is not less than 1.

Consider the following geometric series:

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} + \frac{1}{512} + \dots + \frac{1}{2^n}$$

$$S_1 = \frac{1}{2}$$

$$S_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

$$S_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$$

$$S_4 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \frac{15}{16}$$

$$S_{10} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{1024} = \frac{1023}{1024}$$

The more terms we add to our *partial sums* above, the closer the series "*approaches a limit*" of 1.

If our infinite series is **convergent** (|r| < 1) we can calculate its sum by the formula:

$$S = \frac{t_1}{1 - r}$$

Do the following geometric series have a sum? If so, find the sum:

Ex 1)
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} + ...$$
 $r = -\frac{1}{3}$, $|\frac{1}{3}| < 1$ is true

$$S = \frac{t_1}{1 - r}$$

$$S = \frac{1}{1 - \frac{1}{3}} = \frac{1}{1 + \frac{1}{3}} = \frac{2}{3}$$

Ex 2)
$$1+5+25+125+...$$

 $r=5$, $|5/4|$ is False

This series does NOT have a sum.

Ex 3)
$$1 + (-1) + 1 + (-1) + \dots$$

This series does NOT have a sum.

Ex 4)
$$5 + \frac{5}{2} + \frac{5}{4} + \frac{5}{8} + \dots$$

$$S = \frac{t_1}{1 - r}$$

$$S = \frac{5}{1-\frac{1}{2}} = \frac{5}{\frac{1}{2}} = 5.2 = 10$$