13-4 Graphs of the Sine and Cosine Functions Page 624

To graph $y = \sin \theta$ we will have to remember several values of

For Homework you will follow the above example and graph the Cosine function. Sine and Cosine are called **Periodic Functions** because their basic shape repeats every 360° or 2π radians. The period for these two functions is therefore, 360° or 2π radians. Think of the Sine curve as a horizontal "S" shape and Cosine as a "U" shape.

Let's look at general Sine and Cosine functions and their graphs $y = A \sin B\theta$

 $y = A \cos B\theta$

A represents the Amplitude of the graph, this is half the difference between the maximum and minimum values. If A is a negative number, your graph is reflected across the x-axis.

 \mathbf{B} helps you find the period of the graph. To calculate the period, divide 360° or 2π by the absolute value of \mathbf{B} , $|\mathbf{B}|$.

Let's look at some characteristics of the Sine graph:

- 1) at 0° or 0 radians its value is 0
- 2) at one fourth of its period it reaches its maximum value
- 3) half way through its period it is 0
- 4) three fourths of its period it reaches its minimum value
- 5) at the end of its period it is again 0
- 6) if A is negative, the placement of the maximimum and minimum values are reversed (a reflection across the x-axis).

Ex 1) Sketch the graph of: $y = 3 \sin 2\theta$.

Amplitude = 3 Period = 180° or π radians

Ex 2) Sketch the graph of:
$$y = -\frac{1}{2}\sin\frac{1}{2}\theta$$

Amplitude = 1/2Period = 720° or 4π Negative sign creates reflection of graph over x- axis. Let's look at some characteristics of the Cosine graph:

- 1) at 0° or 0 radians it reaches its maximum value
- 2) at one fourth of its period it is 0 (zero)
- 3) half way through its period it reaches its minimum value
- 4) three fourths of its period it is 0 (zero) again
- 5) at the end of its period it reaches its maximum value again
- 6) if A is negative, the placement of the maximimum and minimum values are reversed (a reflection across the x-axis).

Ex 3) Sketch the graph of: $y = 4 \cos 2\theta$

Amplitude = 4 Period = 180° or π Ex 4) Sketch the graph of:

$$y = -\frac{3}{4}\cos\frac{1}{3}\theta$$

Amplitude = 3/4Period = 1080° or 6π