16 - 1 Matrices: Definitions of Terms Page 767

A matrix is a rectangular array of numbers enclosed by square brackets (plural of matrix is matrices).

The numbers in a matrix are called the **elements** (or members) of the matrix. The number of **rows** (horizontal) and **columns** (vertical) determine the **dimensions** of the matrix.

A matrix with m rows and n columns is called a matrix whose dimensions are $m \times n$ (rows before columns: RC Cola...).

We use capital letters for the name of a matrix and subscripts for the dimensions of the matrix.

A matrix with 2 rows and 3 columns may be written as:

$$A_{2x3}$$

Here are some examples of matrices:

$$\begin{bmatrix} 3 & -10 & \frac{1}{2} \\ A_{1 \times 3} & B_{2 \times 1} \end{bmatrix} \begin{bmatrix} 6 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 9 & 1 & 0 \\ 0 & 3 & 2 \end{bmatrix}$$

$$D_{2 \times 3}$$

What are the dimensions of the matrices listed above?

A square matrix is a matrix that has the same number of rows and columns.

A zero matrix is a matrix where all the elements are zeros.

Ex 1) Write a zero matrix with 2 rows and 4 columns. Name this matrix E.

$$E_{2x4} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Two matrices are equal if and only if (iff):

- 1) they have the same dimensions, and
- 2) the elements in all corresponding positions are equal.

For example:

$$\begin{bmatrix} 5 & 7 & \pi \\ \frac{7}{8} & \sqrt{2} & -10 \end{bmatrix} = \begin{bmatrix} 5 & 7 & \pi \\ \frac{7}{8} & \sqrt{2} & -10 \end{bmatrix}$$

Ex 2) Find the value of each variable (solve for x and y).

$$\begin{bmatrix} x+5 & -1 \\ 4 & 6 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 4 & 3y \end{bmatrix}$$

Since the matrices are equal, the elements in corresponding positions must be equal, therefore, we can solve as follows:

$$\boxed{1} \quad 3y = \frac{6}{3}$$

$$\boxed{y=2}$$

An $m \times n$ matrix, where m and n are positive integers, is an array in for form that follows.

(We can also refer to the elements in a matrix by their row and column position using subscripts as shown below.)

a_{11}	a_{12}	a_{13}	•••	$a_{_{1n}}$
a_{21}	a_{22}	a_{23}	***	a_{2n}
a_{31}	a_{32}	a_{33}		a_{3n}
			•••	
$\lfloor a_{m1} \rfloor$	a_{m2}	a_{m3}	•••	a_{mn}