3-6 Systems of Linear Equations in two variables Page 131

Algebra 2 Standard: 2.0 Students solve systems of linear equations and inequalities (in two or three variables) by substitution, with graphs, or with matrices.

Ex 1) In one day, a music store sold 10 guitars for a total of \$4800. Electric guitars sold for \$450 each and acoustic guitars sold for \$550 each.

These were the only types of guitars sold that day. How many of each type of guitar were sold?

Let x = number of electric guitars sold.

Let y = number of acoustic guitars sold.

Equation 1: represents number of guitars sold. Equation 2: represents amount of sales in dollars.

Solve this system of equations using either the substitution or linear combination methods.

$$\begin{array}{c}
\text{(1)} \\
450(x+y=10) \rightarrow \\
450x + 450y=4500 \\
-100y= -300 \\
-100 & -100
\end{array}$$

$$\begin{array}{c}
-100y= -300 \\
-100 & -100
\end{array}$$

$$\begin{array}{c}
\text{(2)} \\
\text{(2)} \\
\text{(3)} \\
\text{(2)} \\
\text{(4)} \\
\text{(3)} \\
\text{(4)} \\
\text{(4)} \\
\text{(5)} \\
\text{(4)} \\
\text{(4)} \\
\text{(5)} \\
\text{(5)} \\
\text{(6)} \\
\text{(6)} \\
\text{(7)} \\
\text{($$

There were 7 electric guitars and 3 acoustic guitars sold that day.

Ex 2) A one day pass for an amusement park costs \$6 more for adults than for children.

When 3 tickets were purchased for children and 7 tickets were purchased for adults the total cost for the tickets was \$852. Find the cost of each adult ticket.

Let x = cost for children's ticket

Let y = cost for adult ticket

Equation 1: represents comparison of ticket costs.

Equation 1: represents total cost of the tickets.

$$y = x + 6$$

 $3x + 7y = 852$
 $3x + 7(x + 6) = 852$
 $3x + 7x + 42 = 852$
 $10x + 42 = 852$
 $10x = 810$
 $x = 81$ cost for children's tickets

Cost for adult tickets: \$87

Ex 3) Joe's Moped charges a rental fee of \$35 plus \$5 per hour or any fraction thereof. Sam's Moped charges a rental fee of \$20 plus \$7.50 per hour or any fraction thereof. When is it more cost effective to rent from Joe's Moped?

(Hint: when is the cost the same?)

Let x = cost per hour

Let y = total cost for each rental service.

Equation 1 Joe's: y = 5x + 35

Equation 2 Sam's: y = 7.5x + 20

$$y = 5(6) + 35$$

$$y = 30 + 35$$

$$y = 65$$
 y = total cost for each rental service.

At 6 hours, both rentals cost \$65.

A graph can be helpful to visualize the cost for each rental service. A table of data can help too.

	Sam's	Joe's
Х	y=7.5x+20	y=5x+35
1	27.5	40
3	35	45
3	42.5	50
4	50	55
5	57.5	60
6	65	65
7	72.5	70
8	80	75
9	87.5	80
10	95	85

Sam's rental is less expensive for 5 hours or less, while Joe's rental is less expensive when renting a Moped for more than 6 hours.