
3-8 Functions Page 141

A *function* is a correspondence in which each member of the **Domain** is matched with exactly one member of the **Range**.

This correspondence can be illustrated by using a *mapping* diagram as shown below.

Functions are often named by letters and may use the letters f, g, h.

Two different notations may be used to represent functions:

- 1) f(x) = 2x which is read " $f \circ f x$ " and represents the value of the function at x.
- 2) $f: x \to 2x$ which is read f, the function that assigns x to 2x.

Ex 1) Find the Range of the given function if the Domain = $\{1, 2, 3\}$

This can also be written as find: f(1), f(2), and f(3) for the function.

$$f(x) = x^2 - 5$$
 also written as $f: x \rightarrow x^2 - 5$

$$f(1) = 1 \Rightarrow \chi^{2} - 5 \Rightarrow -4$$

$$f(2) = 2 \Rightarrow \chi^{2} - 5 \Rightarrow -1$$

$$f(3) = 3 \Rightarrow \chi^{2} - 5 \Rightarrow 4$$

$$Range = \{-4, -1, 4\}$$

Ex 2) Given that f(x) = 3x - 5 and g(x) = 2x + 4a) find f(g(2))

b) and find g(f(2))

a)
$$f(g(x)) = 19$$

2 $\rightarrow 2x+4 \xrightarrow{8} 3x-5 \rightarrow 19$
b) $g(f(x)) = 6$
2 $\rightarrow 3x-5 \xrightarrow{1} 2x+4 \rightarrow 6$

Ex 3) Find the Domain of the function:

$$f(x) = \frac{x}{x-5}$$

Translation: What value of x would make the denominator equal to zero?

$$\cancel{\chi} \neq 5$$
Domain = {all real numbers except x \neq 5}