### Algebra 2 6-8 The Complex Numbers Page 292

Alg 2 Standard 6.0: Students add, subtract, multiply, and divide complex numbers.

Alg 2 Standard 5.0: Students demonstrate knowledge of how real and complex numbers are related both arithmetically and graphically. In particular, they can plot complex numbers as points in the plane.

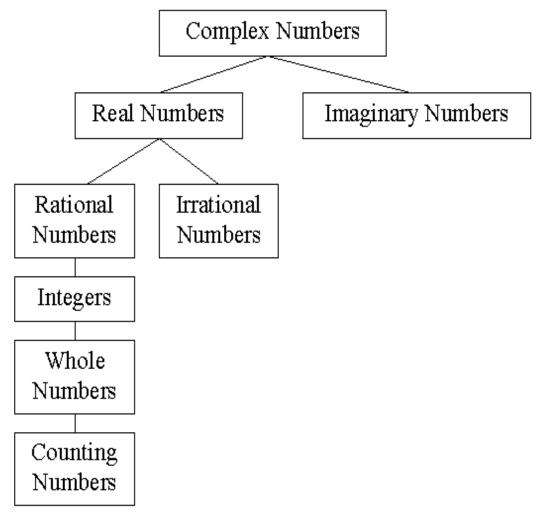
Objectives: The student will be able to:

- 1. Add complex numbers
- 2. Subtract complex numbers
- 3. Multiply complex numbers
- 4. Divide complex numbers
- 5. Graph complex numbers in the complex plane.
- 6. Identify how complex numbers are related to the other number systems.

The **real numbers** and the **imaginary numbers** together form the set of **complex numbers**.

A **complex number** is a number in the form of a + bi, where a and b are real numbers. We call the number a the **real part** of the complex number and b the **imaginary part**.

The set of the complex numbers can be illustrated as follows:



# **Equality of Complex Numbers**

$$a + bi = c + di$$
 if and only if  $a = c$  and  $b = d$ 

### Sum of Complex Numbers

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

## **Product of Complex Numbers**

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

#### Example 1 Simplify:

$$(3+4i) + (-2-6i)$$

$$= (3+-2)+(4+-6)i$$

$$1-2i$$

1b) 
$$(7+2i) - (3-6i)$$
  
 $(7+2i) + (-3+6i)$   
 $(7+-3) + (2+6)i$   
 $(4+8i)$ 

### Example 2 Simplify:

$$2a) (2+3i)(5-6i)$$

$$= 10 - 12i + 15i - 18i^{2}$$

$$= 10 + 3i - 18(-1)$$

$$= (28 + 3i)$$

$$2b) (2-4i)^{2}$$

$$= 2^{2} + 2(2)(-4i) + (-4i)^{2}$$

$$= 4 - 16i + 16i^{2}$$

$$= 4 - 16i + 16(-1)$$

$$= (-12 - 16i)$$

$$2c) (2+3i)(2-3i)$$

$$4 - 9i^{2}$$

$$4 - 9(-1)$$

$$4+9$$

$$(3)$$

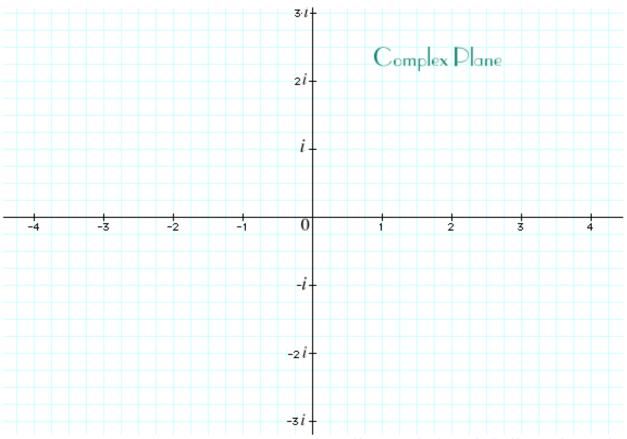
# **Example 3 Simplify:**

3) 
$$\frac{2-i}{2-3i}$$

# Example 4 Find the reciprocal of 2-i

$$\frac{2+i}{4-i^2} \Rightarrow \frac{2+i}{4-(-i)} \Rightarrow \frac{2+i}{5}$$

We can represent complex numbers in a coorinate plane by allowing x + yi to correspond to the point (x, y). We call this plane the **Complex Plane**. The horizontal axis is called the **real axis** and the vertical axis is called the **imaginary axis**.

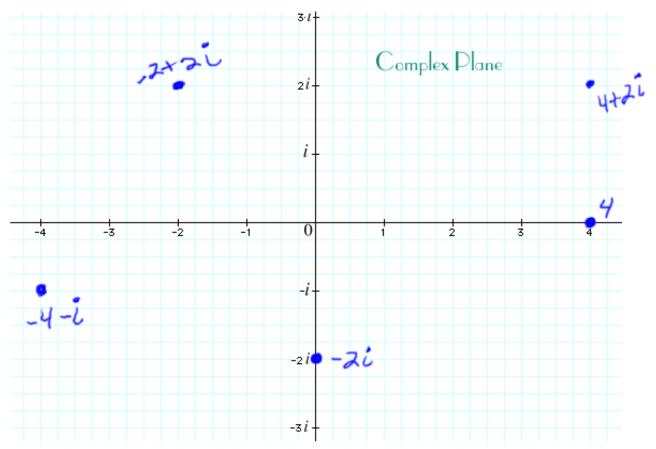


http://www.clarku.edu/~djoyce/complex

Real numbers are considered special cases of complex numbers; they are the numbers x + yi when y is 0. We graph these numbers on the real axis (horizontal axis). The numbers on the imaginary axis (vertical axis) are called imaginary numbers just as we studied in a previous lesson and are represented as x + yi when x is 0.

Example 5 Graph the following complex numbers on the complex plane:

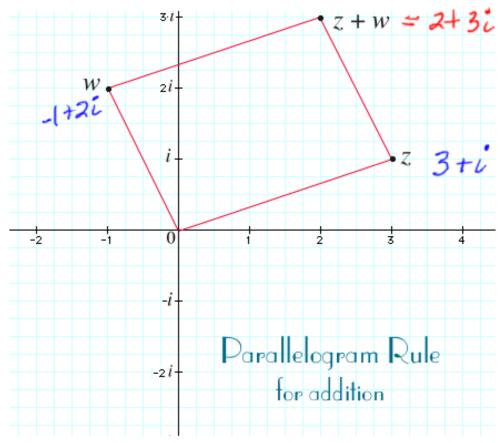
4, 
$$-2i$$
, 4 + 2 $i$ , -4 -  $i$ , and -2 + 2 $i$ .



http://www.clarku.edu/~djoyce/complex

Graphing gives us a Geometric way to represent complex numbers. Whereas, in the beginning of this lesson we represented them Algebraically as in the expression x + yi.

Geometrically, addition can be represented graphically on the complex plane. Consider the example: (3 + i) + (-1 + 2i). The complex number z = 3 + i is located 3 units to the right of the imaginary axis and 1 unit above the real axis, while w = -1 + 2i is located 1 unit left and 2 units up. So the sum z + w = 2 + 3i is 2 units right and 3 units up.



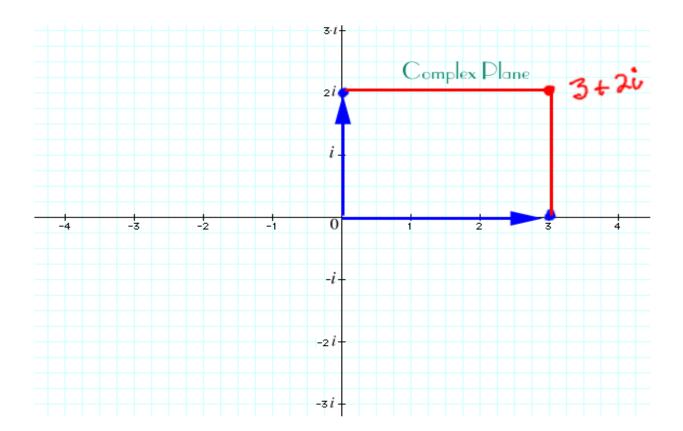
http://www.clarku.edu/~djoyce/complex/

**Parallelogram Rule**. Note in the last example that the four complex numbers 0, z = 3 + i, w = -1 + 2i, and z + w = 2 + 3i are the corners of a parallelogram. This is generally true.

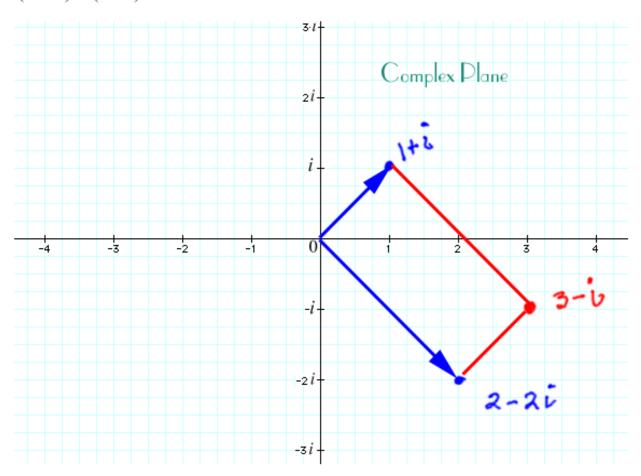
To find where in the Complex Plane  $\mathbb{C}$  the sum z+w, of two complex numbers, z and w is located, plot z and w (the two complex numbers), draw lines from 0 to each of them, and complete the parallelogram.

The fourth vertex will be the sum of the two complex numbers, z + w.

Example 6: Graph the following complex numbers and use the Parallelogram Rule to find and graph the sum. Add 3 and 2*i*.



Example 7: Graph the following complex numbers and use the Parallelogram Rule to find and graph the sum. Graph and add: (2 - 2i) + (1 + i).



Thanks to David Joyce, Clark University, for the information on graphing complex numbers. This information can be found at: http://www.clarku.edu/~djoyce/complex/