Look at the following equations:

$$X^2-5x-6=0$$

 $(3x-2)^2-5(3x-2)-6=0$
 $(\frac{1}{2}x)^2-5(\frac{1}{2}x)-6=0$
 $X-5VX-6=0$
 $X^4-5X^2-6=0$
 $X^4-5X^2-6=0$
 $X^2-5X^2-6=0$

Only the first equation is a quadratic equation. The others are "in the form (format)" of a quadratic.

- 1) At most 3 terms
- 2) The variable (or variable expression) occurs at most twice
- 3) The "smaller" variable squared = the "larger" variable

When these three are all true, we can solve the equation using any of the methods used to solve a quadratic equation:

- 1) Factoring
- 2) Completing The Square
- 3) Quadratic Formula

EXI Solve:
$$(3x-2)^2 - 5(3x-2) - 6 = 0$$

 $[(3x-2) - 6] = 0$ $[(3x-2)+1] = 0$
 $[(3x-2) - 6] = 0$
 $[(3x-2) + 1] = 0$

$$\frac{1}{2x} = \frac{5+7}{2}$$

$$\frac{1}{2x} = \frac{5+7}{2}$$

$$\frac{1}{2x} = \frac{3}{2}$$

$$\frac{1$$

EX3 Solve:
$$3x + 4\sqrt{x} - 2 = 0$$
 $a = 3$
 $b = 4$
 $c = -2$
 $1x = -\frac{4 \pm \sqrt{4^2 - 4(3)(-2)}}{2(3)}$
 $1x = -\frac{4 \pm \sqrt{40}}{6}$
 $1x = -\frac{2 + \sqrt{10}}{6}$
 $1x = -\frac{2 + \sqrt{10}}{3}$
 $1x = -\frac{2 + \sqrt{10}}{3}$
 $1x = -\frac{2 + \sqrt{10}}{3}$
 $1x = -\frac{2 + \sqrt{3}}{3}$
 $1x = -\frac{2 + \sqrt{3}}{3}$

EX 4 Solve
$$x^{4} + 7x^{2} - 18 = 0$$

Factor:
 $(x^{2} + 9 \times x^{2} - 2) = 0$
 $x^{3} + 9 = 0 \times x^{3} - 2 = 0$
 $x^{2} = -9 \times x^{2} = 2$
 $x^{2} = 1 - 9 \times x^{2} = 12$
 $1x1 = 3i \quad |x| = 1/2$
 $x = \pm 3i \quad \text{or} \quad x = \pm 1/2$