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The Fundamental Theorem of Algebra (Carl Gauss)
For every polynomial of degree n > 1(with complex
coefficients) there exists at least one linear factor.

Another Theorem by Carl Friedrich Gauss
Every polynomial of degree n > 1. (w
coefficients) can be fa

Once we have these n linear factors, we can use the
Zero Product Property to find the n roots o solutions
of the polynomial.

Conjugate Root Theorem for Complex Roots
1f a polynomial P(x) of degree greater than or equal to 1
(with real coefficients) has a complex number as a root
a+ bi. then its conjugate a - bi is also a root.

In other words. complex roots occur in conjugate pairs.

Conjugate Root Theorem for Irrational Roots
I a polynomial P(x) of degree greater than or equal to |
(with rational number coefficients) has an irrational root
a-+ b\T., then its conjugate a - b\C is also a root.

In other word itional roots oceur in conjugate pairs.
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[image: image5.png]Descartes' Rule of Signs
‘The number of positive real roots of a polynomial P(x)
(with real cocflicients) is cither:

1) the same as the number of variations of signs of P(x), or
2) a multiple of 2 less than the number of sign changes.
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The number of negative real roots of a polynomial P(x)
(with real cocflicients) is cither:

1) the number of sign variations of P(-x), or

2) a multiple of 2 less than the number of sign changes.
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For every polynomial of degree n > 1(with complex
coefficients) there exists at least one linear factor.

Another Theorem by Carl Friedrich Gauss
Every polynomial of degree n > 1. (w
coefficients) can be fa

Once we have these n linear factors, we can use the
Zero Product Property to find the n roots o solutions
of the polynomial.

Conjugate Root Theorem for Complex Roots
1f a polynomial P(x) of degree greater than or equal to 1
(with real coefficients) has a complex number as a root
a+ bi. then its conjugate a - bi is also a root.

In other words. complex roots occur in conjugate pairs.

Conjugate Root Theorem for Irrational Roots
I a polynomial P(x) of degree greater than or equal to |
(with rational number coefficients) has an irrational root
a-+ b\T., then its conjugate a - b\C is also a root.

In other word itional roots oceur in conjugate pairs.
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‘The number of positive real roots of a polynomial P(x)
(with real cocflicients) is cither:

1) the same as the number of variations of signs of P(x), or
2) a multiple of 2 less than the number of sign changes.
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