coefficients of the quadratic equation representing it.

Geometry Reminder:

A hyperbola is the set of all points P in a plane such that the absolute value of the difference of the distances from P to two fixed points F_{1} and F_{2} is constant. The fixed points are the foci of the hyperbola. The line segments r_{1} and r_{2} are called the focal radii.

Next Page

Ex 1) For the hyperbola find the center, vertices, foo eccentricity, draw the asymptotes and then graph.

$$
\frac{(x-2)^{2}}{1}-\frac{(y-5)^{2}}{9}=1
$$

horizontal center $(2,5)$

$$
a=1 \leftrightarrow \quad b=3 \uparrow
$$

vertices: $(1,5)(3,5)$

$$
c=\sqrt{1+9}=\sqrt{10} \doteq 3.2 \leftrightarrow
$$

foci: $(-1.2,5)(5.2,5)$
eccentricity $e=\frac{c}{a} \quad e=\frac{\sqrt{10}}{l}$

$$
\begin{aligned}
& y=3(x-2)+5 \\
& y=3 x-6+5 \\
& y=3 x-1 \\
& y=-3(x-2)+5 \\
& y=-3 x+6+5 \\
& y=-3 x+11
\end{aligned}
$$

Ex 2) For the hyperbola find the center, vertices, foci, eccentricity, draw the asymptotes, and then graph.

$$
\begin{aligned}
& \frac{(y+3)^{2}}{25}-\frac{(x+1)^{2}}{16}=1 \quad \text { center }(-1,-3) \\
& a=5 \mathrm{f} b=4 \leftrightarrow
\end{aligned}
$$

vertices: $(-1,2)(-1,-8)$

$$
c=\sqrt{25+16}=\sqrt{41} \doteq 6.4 \uparrow
$$

foci: $(-1,3.4)(-1,-9.4)$
eccentricity: $e=\frac{c}{a} \quad e=\frac{\sqrt{41}}{5}$
asymptotes: $y= \pm \frac{5}{4}(x++1)+-3$

$$
y=\frac{5}{4}(x+1)-3 \quad\left\{\begin{array}{l}
y=-\frac{5}{4}(x+1)-3 \\
y=\frac{5}{4} x-1 \frac{3}{4}
\end{array}, \begin{array}{l}
y=-\frac{5}{4} x-4 \frac{1}{4}
\end{array}\right.
$$

The eccentricity of an hyperbola is: $\mathrm{e}>1$.
Below is a table of eccentricities for the conic sections:

Conic Section	Interval	The ratio e
Circle	$\mathrm{e}=0$	0
Ellipse	$0<\mathrm{e}<1$	$\frac{c}{a}$
Parabola	$\mathrm{e}=1$	1
Hyperbola	$\mathrm{e}>1$	$\frac{c}{a}$

Theorem: For a hyperbola of the form:
$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$
where $c=\sqrt{a^{2}+b^{2}}$
The eccentricity e $=\frac{c}{a}$

