Writing Your First
Programs
Chapter 2

Mr. Dave Clausen
La Canada High School

Program Development
Top Down Design

Planning is a critical issue
— Don’t type 1n code “off the top of your head”

Programming Takes Time

— Plan on writing several revisions
— Debugging your program
Programming requires precision

— One misplaced semi-colon will stop the
program

Mr. Dave Clausen 2

Exercise In Frustration

Plan well (using paper and pencil)
Start early

Be patient

Handle Frustration

Work Hard

Don’t let someone else do part of the
program for you. Understand the Concepts
Yourself!

Mr. Dave Clausen 3

Six Steps To

Good Programming Habits #1

" 1. Analyze the Problem

— Know w
— Know w
— Know w

— Formulate a clear and precise statement of what
IS to be done.

nat data are available
nat may be assumed

nat output Is desired & the form it

should take
— Divide the problem into subproblems

Mr. Dave Clausen 4

Six Steps To
Good Programming Habits #2

2. Develop an Algorithm

— Algorithm:

a finite sequence of effective statements that when
applied to the problem, will solve it.

— Effective Statement:

a clear unambiguous instruction that can be carried
out.

— Algorithms should have:

a specific beginning and ending that is reached in a
reasonable amount of time (Finite amount of time).

Mr. Dave Clausen 5

Six Steps To
» Good Programming Habits #3

3. Document the Program
— Programming Style

— Comments

— Descriptive Variable Names
— Pre & Post Conditions

— Output

Mr. Dave Clausen 6

N Six Steps To
 Good Programming Habits #4-5

1

4, Code the Program
— After algorithms are correct
— Desk check your program

5. Run the Program
— Syntax Errors (semi colon missing, etc.)
— Logic Errors (divide by zero, etc.)

Mr. Dave Clausen 7

Six Steps To
Good Programming Habits

6. Test the Results
— Does it produce the correct solution?
— Check results with paper and pencil.

— Does it work for all cases?
Border, Edge, Extreme Cases

— Revise the program if not correct.

Mr. Dave Clausen

Top Down Design

Subdivide the problem into major tasks

— Subdivide each major task into smaller tasks
Keep subdividing until each task is easily solved.

Each subdivision is called stepwise
refinement.

Each task Is called a module

We can use a structure chart to show
relationships between modules.

Mr. Dave Clausen 9

O

Down Design

Structure Chart

Main Task
I

Sub task

I |
Sub task Sub task

Mr. Dave Clausen

10

Top Down Design

Pseudocode

— Is written in English with C++ like sentence
structure and Indentations.

— Major Tasks are numbered with whole numbers
— Subtasks use decimal points for outline.

Mr. Dave Clausen 11

Pseudocode

(et Information
. (7et starting balance
2 et transaction type

1
1
1.%. et transaction amount
P

. If deposit then
add to balance
Else
subtract from balance
Dizplay the results
2. 1. Display starting b

5.2, Display transaction

Display transaction type
Display transaction atnount

Checkbook.cpp

Mr. Dave Clausen 12

CHBOOK.CPP

Writing Programs

' C++ Vocabulary
— reserved words

have a predefined meaning that can’t be changed
— library identifiers

words defined in standard C++ libraries

— programmer supplied identifiers

defined by the programmer following a well defined
set of rules

Mr. Dave Clausen 13

Writing Programs

" Words are CaSe SeNsltIVE

— For constants use ALL CAPS (UPPERCASE)

— For reserved words and identifiers use
lowercase

Syntax

— rules for construction of valid statements,
Including
order of words
punctuation

Mr. Dave Clausen 14

Library Identifiers

Predefined words whose
meanings could be changed.

Examples:
— lostream
cin cout
— lomanip
setprecision setw
— cmath
pow sin sqrt

Mr. Dave Clausen

15

|dentifiers

Must start with a letter of the alphabet or
underscore _ (we will not use
underscores to start identifiers)

alm for 8 to 15 characters

common use IS to name variables &
constants

Mr. Dave Clausen 16

Basic Program Components

Comments

Preprocessor Directives
using namespace std;
Constant Declaration Section
Type Declaration Section
Function Declarations

Main Program Heading: int main()
— Declaration Section (eg. variables)
— Statement Section

Mr. Dave Clausen 17

18

Mr. Dave Clausen

Reswords.doc

=
C 3
S O
@
g =
=,
L o
S >
S 2
n 2
<

RESWORDS2.doc

Writing Code In C++

Executable Statement

— basic unit of grammar

library identifiers, programmer defined
Identifiers, reserved words, numbers and/or
characters

— A semicolon almost always terminates a
statement
usually not needed AFTER a right curly brace }
— Exception: declaring user defined types.

Programs should be readable
noformat.cpp format.cpp

Mr. Dave Clausen 19

noformat.cpp
format.cpp

Simple Data Types

" Type int
4 — represent integers or whole numbers
— Some rules to follow:

Plus signs do not need to be written before the
number

Minus signs must be written when using negative #’s
Decimal points cannot be used

Commas cannot be used
— A comma 1s a character and will “crash” your program, no

joke.
Leading zeros should be avoided (octal or base 8 #’s)

limits.h Int_max Int_min

Mr. Dave Clausen 20

Simple Data Types

" Type double
— used to represent real numbers

— many programmers use type float, the AP
Board likes the extra precision of double

— avold leading zeros, trailing zeros are ignored

— limits.h, float.h
dbl_max, dbl_min, dbl_dig

Mr. Dave Clausen 21

Simple Data Types

Type char

— used to represent character data
a single character which includes a space
See Appendix 4 in our text
— must be enclosed in single quotes eg. ‘d’

— Escape sequences treated as single char
“\n’ newline
‘\”> apostrophe
‘> double quote
‘At tab
‘" pathnames for files

Mr. Dave Clausen

22

Simple Data Types
= Strings
 _used to represent textual information
— string constants must be enclosed in double
guotation marks eg. “Hello world!”
empty string “”
new line char or string “\n”

“the word \’hello\"”” (puts quotes around
“hello”)

Mr. Dave Clausen 23

24

12,
09

printadd?2.cpp

Mr. Dave Clausen

— cout pronounced see-out
— cout << “Hello world
— cout << “Hello world!” << end|

— cout << ‘\n
— cout << end|

PRINTADD2.CPP

, Formatting Integers
) - #include <lomanip>

 (input/output manipulators)

% right justify output

— cout << setiosflags (ios::right);
specify field width

— cout << setw(10) << 100 (output:
*xHAXX%100, where * represents a space.)

specify decimal precision

— cout<<setiosflags (1os::fixed | 10s::showpoint |
10S::right)<< setprecision (2);

Mr. Dave Clausen 25

Setprecision

" Precision is set and will remain until the
=+ programmer specifies a new precision
... _ The decimal uses one position

— Trailing zeros are printed the specified number
of places

— Leading plus signs are omitted

— Leading minus signs are printed and use 1
position

— Digits are rounded, not truncated.

Mr. Dave Clausen 26

Test Programs

Test programs are short programs written to
provide an answer to a specific question.

You can try something out
Play with C+ +

Ask “what 1 questions
Experiment: try and see

Mr. Dave Clausen 27

