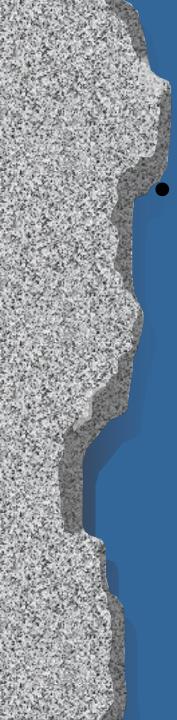
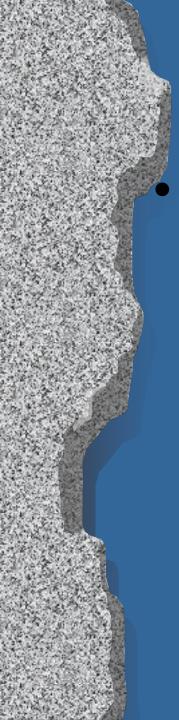


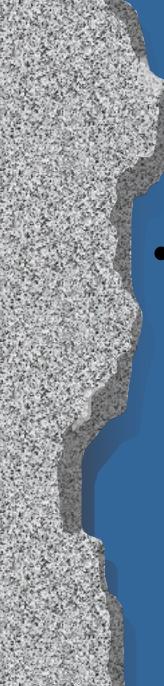
Writing Your First Programs Chapter 2


Mr. Dave Clausen
La Cañada High School

- Planning is a critical issue
 - Don't type in code "off the top of your head"
- Programming Takes Time
 - Plan on writing several revisions
 - Debugging your program
- Programming requires precision
 - One misplaced semi-colon will stop the program



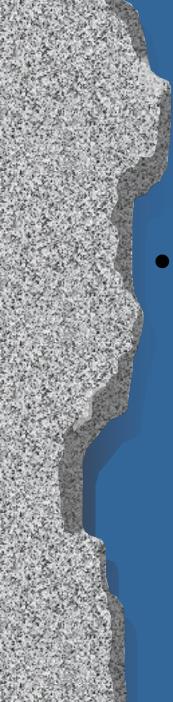
- Plan well (using paper and pencil)
- Start early
- Be patient
- Handle Frustration
- Work Hard
- Don't let someone else do part of the program for you. Understand the Concepts Yourself!


Six Steps To Good Programming Habits #1

- 1. Analyze the Problem
- Formulate a clear and precise statement of what is to be done.
- Know what data are available
- Know what may be assumed
- Know what output is desired & the form it should take
- Divide the problem into subproblems

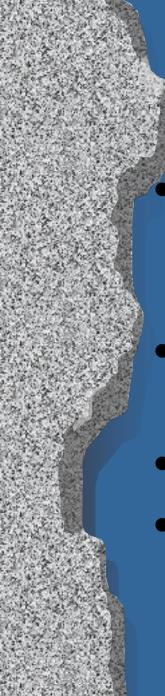
Six Steps To Good Programming Habits #2

- 2. Develop an Algorithm
 - Algorithm:
 - a finite sequence of *effective* statements that when applied to the problem, will solve it.
 - Effective Statement:
 - a clear unambiguous instruction that can be carried out.
 - Algorithms should have:
 - a specific beginning and ending that is reached in a reasonable amount of time (Finite amount of time).



Six Steps To Good Programming Habits #3

- 3. Document the Program
 - Programming Style
 - Comments
 - Descriptive Variable Names
 - Pre & Post Conditions
 - Output



- 4. Code the Program
 - After algorithms are correct
 - Desk check your program
- 5. Run the Program
 - Syntax Errors (semi colon missing, etc.)
 - Logic Errors (divide by zero, etc.)

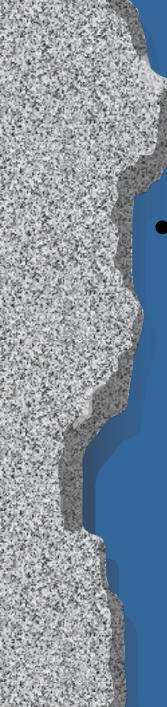
Six Steps To Good Programming Habits

- 6. Test the Results
 - Does it produce the correct solution?
 - Check results with paper and pencil.
 - Does it work for all cases?
 - Border, Edge, Extreme Cases
 - Revise the program if not correct.

Top Down Design

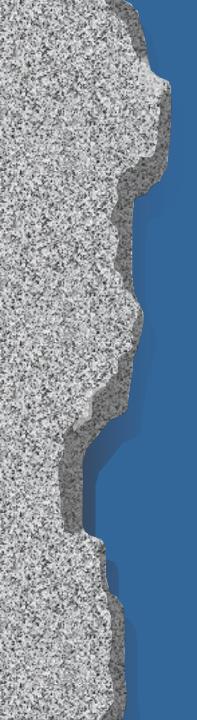
- Subdivide the problem into major tasks
 - Subdivide each major task into smaller tasks
 - Keep subdividing until each task is easily solved.
- Each subdivision is called stepwise refinement.
- Each task is called a module
- We can use a structure chart to show relationships between modules.

Top Down Design


Structure Chart

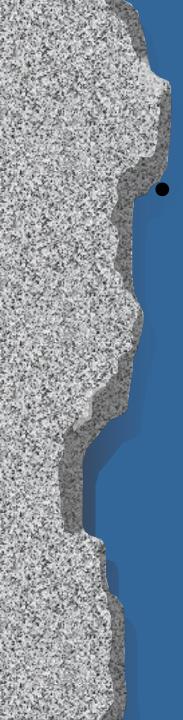
Main Task

Sub task


Sub task

Sub task

Top Down Design


- Pseudocode
 - is written in English with C++ like sentence structure and indentations.
 - Major Tasks are numbered with whole numbers
 - Subtasks use decimal points for outline.

Pseudocode

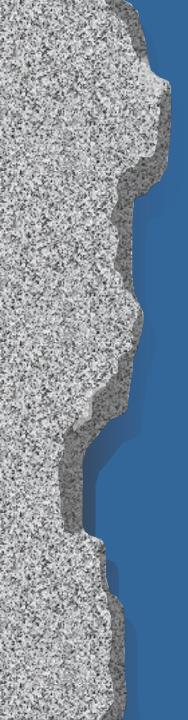
- 1. Get Information
 - 1.1. Get starting balance
 - 1.2. Get transaction type
 - 1.3. Get transaction amount
- 2. Perform computations
 - 2.1. If deposit then add to balance
 Else
 subtract from balance
- 3. Display the results
 - 3.1. Display starting balance
 - 3.2. Display transaction
 - 3.2.1. Display transaction type
 - 3.2.2. Display transaction amount
 - 3.3. Display ending balance


Checkbook.cpp

Writing Programs

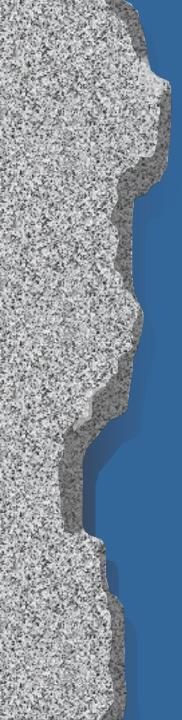
C++ Vocabulary

- reserved words
 - have a predefined meaning that can't be changed
- library identifiers
 - words defined in standard C++ libraries
- programmer supplied identifiers
 - defined by the programmer following a well defined set of rules

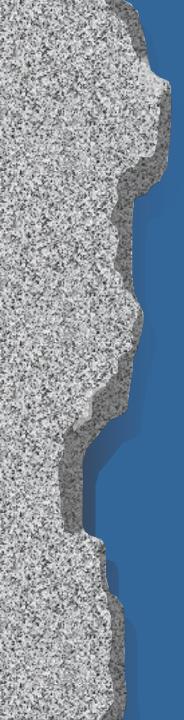

Writing Programs

Words are CaSe SeNsItIvE

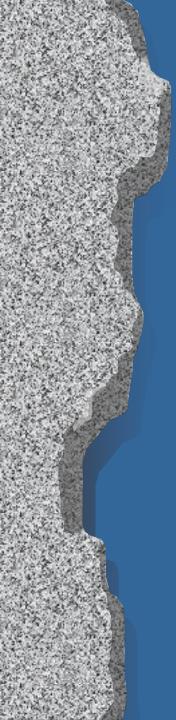
- For constants use ALL CAPS (UPPERCASE)
- For reserved words and identifiers use lowercase


Syntax

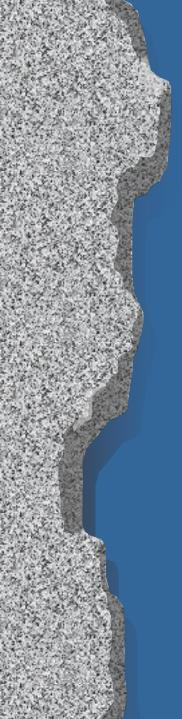
- rules for construction of valid statements, including
 - order of words
 - punctuation


Library Identifiers

- Predefined words whose meanings could be changed.
- Examples:
 - iostream
 - cin cout
 - iomanip
 - setprecision setw
 - cmath
 - pow sin sqrt


Identifiers

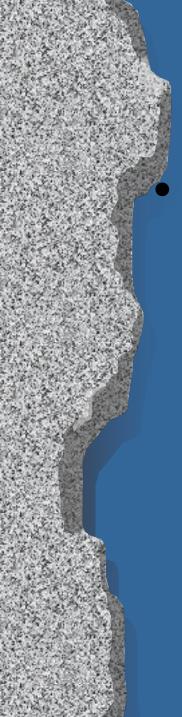
- Must start with a letter of the alphabet or underscore _ (we will not use underscores to start identifiers)
- aim for 8 to 15 characters
- common use is to name variables & constants


Basic Program Components

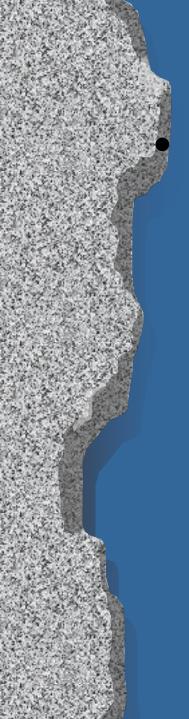
- Comments
- Preprocessor Directives
- using namespace std;
- Constant Declaration Section
- Type Declaration Section
- Function Declarations
- Main Program Heading: int main()
 - Declaration Section (eg. variables)
 - Statement Section


A Sample Program reserved words

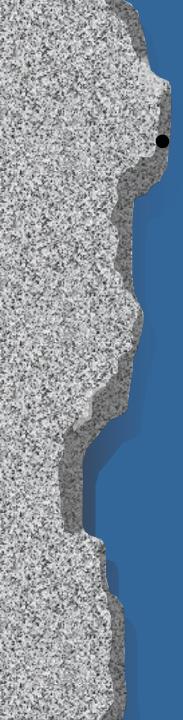
Reswords.doc


Writing Code in C++

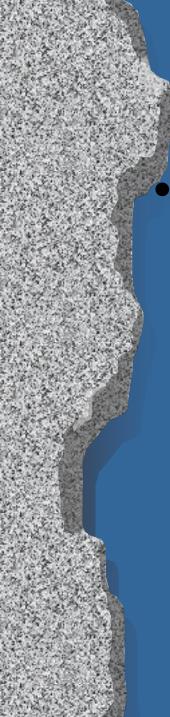
- Executable Statement
 - basic unit of grammar
 - library identifiers, programmer defined identifiers, reserved words, numbers and/or characters
 - A semicolon almost always terminates a statement
 - usually not needed AFTER a right curly brace }
 - Exception: declaring user defined types.
- Programs should be readablenoformat.cpp format.cpp


Type int

- represent integers or whole numbers
- Some rules to follow:
 - Plus signs do not need to be written before the number
 - Minus signs must be written when using negative #'s
 - Decimal points cannot be used
 - Commas cannot be used
 - A comma is a character and will "crash" your program, no joke.
 - Leading zeros should be avoided (octal or base 8 #'s)
 - limits.h int_max int_min


Type double

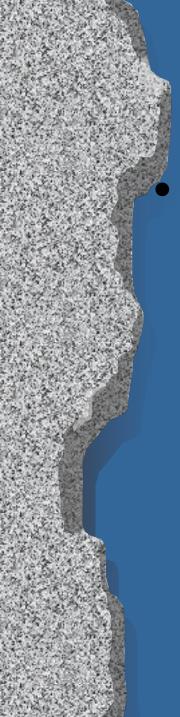
- used to represent real numbers
- many programmers use type float, the AP
 Board likes the extra precision of double
- avoid leading zeros, trailing zeros are ignored
- limits.h, float.h
 - dbl_max, dbl_min, dbl_dig


Type char

- used to represent character data
 - a single character which includes a space
 - See Appendix 4 in our text
- must be enclosed in single quotes eg. 'd'
- Escape sequences treated as single char
 - '\n' newline
 - '\' apostrophe
 - '\''' double quote
 - '\t' tab
 - '\\' pathnames for files

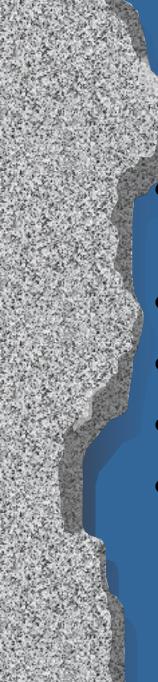
Strings

- used to represent textual information
- string constants must be enclosed in double quotation marks eg. "Hello world!"
 - empty string ""
 - new line char or string "\n"
 - "the word \"hello\"" (puts quotes around "hello")


Output

- #include <iostream>
 - cout pronounced see-out
 - $\overline{|-\operatorname{cout}<<`\setminus n';}$
 - cout << endl;</pre>
 - cout << "Hello world!";</pre>
 - cout << "Hello world!" << endl;

printadd2.cpp


Formatting Integers

- #include <iomanip>
 (input/output manipulators)
- right justify output
 - cout << setiosflags (ios::right);</pre>
- specify field width
 - $-\cot << setw(10) << 100$ (output: ******100, where * represents a space.)
- specify decimal precision
 - cout<<setiosflags (ios::fixed | ios::showpoint |
 ios::right)<< setprecision (2);</pre>

Setprecision

- Precision is set and will remain until the programmer specifies a new precision
 - The decimal uses one position
 - Trailing zeros are printed the specified number of places
 - Leading plus signs are omitted
 - Leading minus signs are printed and use 1 position
 - Digits are rounded, not truncated.

Test Programs

- Test programs are short programs written to provide an answer to a specific question.
- You can try something out
- Play with C++
- Ask "what if" questions
- Experiment: try and see