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Program Development

Top Down Design

 Planning is a critical issue

– Don’t type in code “off the top of your head”

 Programming Takes Time

– Plan on writing several revisions

– Debugging your program

 Programming requires precision

– One misplaced semi-colon will stop the 

program



Mr. Dave Clausen 3

Exercise in Frustration

 Plan well (using paper and pencil)

 Start early

 Be patient

 Handle Frustration

 Work Hard

 Don’t let someone else do part of the 

program for you.  Understand the Concepts 

Yourself!
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Six Steps To 

Good Programming Habits #1

 1. Analyze the Problem

– Formulate a clear and precise statement of what 

is to be done.

– Know what data are available

– Know what may be assumed

– Know what output is desired & the form it 

should take

– Divide the problem into subproblems
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Six Steps To 

Good Programming Habits #2

 2. Develop an Algorithm

– Algorithm:

• a finite sequence of effective statements that when 

applied to the problem, will solve it.

– Effective Statement:

• a clear unambiguous instruction that can be carried 

out.

– Algorithms should have: 

• a specific beginning and ending that is reached in a 

reasonable amount of time (Finite amount of time).
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Six Steps To 

Good Programming Habits #3

 3. Document the Program

– Programming Style

– Comments

– Descriptive Variable Names

– Pre & Post Conditions

– Output
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Six Steps To 

Good Programming Habits #4-5

 4. Code the Program

– After algorithms are correct

– Desk check your program

 5. Run the Program

– Syntax Errors (semi colon missing, etc.)

– Logic Errors (divide by zero, etc.)  
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Six Steps To 

Good Programming Habits

 6. Test the Results

– Does it produce the correct solution?

– Check results with paper and pencil.

– Does it work for all cases?

• Border, Edge, Extreme Cases

– Revise the program if not correct.
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Top Down Design

 Subdivide the problem into major tasks

– Subdivide each major task into smaller tasks

• Keep subdividing until each task is easily solved.

 Each subdivision is called stepwise 

refinement.

 Each task is called a module

 We can use a structure chart to show 

relationships between modules.
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Top Down Design

Structure Chart

Sub task Sub task Sub task

Main Task
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Top Down Design

 Pseudocode

– is written in English with C++ like sentence 

structure  and indentations.

– Major Tasks are numbered with whole numbers

– Subtasks use decimal points for outline.
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Pseudocode

Checkbook.cpp

CHBOOK.CPP
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Writing Programs

 C++ Vocabulary

– reserved words

• have a predefined meaning that can’t be changed

– library identifiers

• words defined in standard C++ libraries

– programmer supplied identifiers

• defined by the programmer following a well defined 

set of rules
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Writing Programs

 Words are CaSe SeNsItIvE

– For constants use ALL CAPS (UPPERCASE)

– For reserved words and identifiers use 

lowercase

 Syntax

– rules for construction of valid statements, 

including

• order of words

• punctuation
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Library Identifiers

 Predefined words whose 

meanings could be changed.

 Examples:

– iostream

• cin cout

– iomanip

• setprecision setw

– cmath

• pow sin sqrt
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Identifiers

 Must start with a letter of the alphabet or 

underscore _ (we will not use 

underscores to start identifiers)

 aim for 8 to 15 characters

 common use is to name variables & 

constants
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Basic Program Components

 Comments

 Preprocessor Directives

 using namespace std;

 Constant Declaration Section

 Type Declaration Section

 Function Declarations

 Main Program Heading:  int main( )

– Declaration Section (eg. variables)

– Statement Section
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A Sample Program

reserved words

Reswords.doc

RESWORDS2.doc
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Writing Code in C++

 Executable Statement

– basic unit of grammar

• library identifiers, programmer defined 

identifiers, reserved words, numbers and/or 

characters

– A semicolon almost always terminates a 

statement

• usually not needed AFTER a right curly brace   }

– Exception: declaring user defined types.

 Programs should be readable

noformat.cpp format.cpp

noformat.cpp
format.cpp
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Simple Data Types

 Type int

– represent integers or whole numbers

– Some rules to follow:

• Plus signs do not need to be written before the 
number

• Minus signs must be written when using negative #’s

• Decimal points cannot be used

• Commas cannot be used

– A comma is a character and will “crash” your program, no 
joke.

• Leading zeros should be avoided (octal or base 8 #’s)

• limits.h     int_max     int_min
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Simple Data Types

 Type double

– used to represent real numbers

– many programmers use type float, the AP 

Board likes the extra precision of double

– avoid leading zeros, trailing zeros are ignored

– limits.h, float.h

• dbl_max,  dbl_min,  dbl_dig
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Simple Data Types

 Type char

– used to represent character data

• a single character which includes a space

• See Appendix 4 in our text

– must be enclosed in single quotes  eg.  ‘d’

– Escape sequences treated as single char

• ‘\n’  newline

• ‘\’’  apostrophe

• ‘\”’  double quote

• ‘\t’ tab

• ‘\\’    pathnames for files
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Simple Data Types

 Strings

– used to represent textual information

– string constants must be enclosed in double 

quotation marks  eg. “Hello world!”

• empty string  “”

• new line char or string  “\n”

• “the word \”hello\””  (puts quotes around 

“hello” )
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Output

 #include <iostream>

– cout pronounced see-out

– cout << ‘\n’;

– cout << endl;

– cout << “Hello world!”;

– cout << “Hello world!” << endl;

printadd2.cpp

PRINTADD2.CPP
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Formatting Integers

 #include <iomanip>      
(input/output manipulators)

 right justify output

– cout << setiosflags (ios::right);

 specify field width

– cout << setw(10) << 100     (output:  

*******100, where * represents a space.)

 specify decimal precision

– cout<<setiosflags (ios::fixed | ios::showpoint | 

ios::right)<< setprecision (2);
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Setprecision

 Precision is set and will remain until the 

programmer specifies a new precision

– The decimal uses one position

– Trailing zeros are printed the specified number 

of places

– Leading plus signs are omitted

– Leading minus signs are printed and use 1 

position

– Digits are rounded, not truncated.
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Test Programs

 Test programs are short programs written to 

provide an answer to a specific question.

 You can try something out

 Play with C+ +

 Ask “what if” questions

 Experiment: try and see


