
Writing Your First

Programs

Chapter 2

Mr. Dave Clausen

La Cañada High School

Mr. Dave Clausen 2

Program Development

Top Down Design

 Planning is a critical issue

– Don’t type in code “off the top of your head”

 Programming Takes Time

– Plan on writing several revisions

– Debugging your program

 Programming requires precision

– One misplaced semi-colon will stop the

program

Mr. Dave Clausen 3

Exercise in Frustration

 Plan well (using paper and pencil)

 Start early

 Be patient

 Handle Frustration

 Work Hard

 Don’t let someone else do part of the

program for you. Understand the Concepts

Yourself!

Mr. Dave Clausen 4

Six Steps To

Good Programming Habits #1

 1. Analyze the Problem

– Formulate a clear and precise statement of what

is to be done.

– Know what data are available

– Know what may be assumed

– Know what output is desired & the form it

should take

– Divide the problem into subproblems

Mr. Dave Clausen 5

Six Steps To

Good Programming Habits #2

 2. Develop an Algorithm

– Algorithm:

• a finite sequence of effective statements that when

applied to the problem, will solve it.

– Effective Statement:

• a clear unambiguous instruction that can be carried

out.

– Algorithms should have:

• a specific beginning and ending that is reached in a

reasonable amount of time (Finite amount of time).

Mr. Dave Clausen 6

Six Steps To

Good Programming Habits #3

 3. Document the Program

– Programming Style

– Comments

– Descriptive Variable Names

– Pre & Post Conditions

– Output

Mr. Dave Clausen 7

Six Steps To

Good Programming Habits #4-5

 4. Code the Program

– After algorithms are correct

– Desk check your program

 5. Run the Program

– Syntax Errors (semi colon missing, etc.)

– Logic Errors (divide by zero, etc.)

Mr. Dave Clausen 8

Six Steps To

Good Programming Habits

 6. Test the Results

– Does it produce the correct solution?

– Check results with paper and pencil.

– Does it work for all cases?

• Border, Edge, Extreme Cases

– Revise the program if not correct.

Mr. Dave Clausen 9

Top Down Design

 Subdivide the problem into major tasks

– Subdivide each major task into smaller tasks

• Keep subdividing until each task is easily solved.

 Each subdivision is called stepwise

refinement.

 Each task is called a module

 We can use a structure chart to show

relationships between modules.

Mr. Dave Clausen 10

Top Down Design

Structure Chart

Sub task Sub task Sub task

Main Task

Mr. Dave Clausen 11

Top Down Design

 Pseudocode

– is written in English with C++ like sentence

structure and indentations.

– Major Tasks are numbered with whole numbers

– Subtasks use decimal points for outline.

Mr. Dave Clausen 12

Pseudocode

Checkbook.cpp

CHBOOK.CPP

Mr. Dave Clausen 13

Writing Programs

 C++ Vocabulary

– reserved words

• have a predefined meaning that can’t be changed

– library identifiers

• words defined in standard C++ libraries

– programmer supplied identifiers

• defined by the programmer following a well defined

set of rules

Mr. Dave Clausen 14

Writing Programs

 Words are CaSe SeNsItIvE

– For constants use ALL CAPS (UPPERCASE)

– For reserved words and identifiers use

lowercase

 Syntax

– rules for construction of valid statements,

including

• order of words

• punctuation

Mr. Dave Clausen 15

Library Identifiers

 Predefined words whose

meanings could be changed.

 Examples:

– iostream

• cin cout

– iomanip

• setprecision setw

– cmath

• pow sin sqrt

Mr. Dave Clausen 16

Identifiers

 Must start with a letter of the alphabet or

underscore _ (we will not use

underscores to start identifiers)

 aim for 8 to 15 characters

 common use is to name variables &

constants

Mr. Dave Clausen 17

Basic Program Components

 Comments

 Preprocessor Directives

 using namespace std;

 Constant Declaration Section

 Type Declaration Section

 Function Declarations

 Main Program Heading: int main()

– Declaration Section (eg. variables)

– Statement Section

Mr. Dave Clausen 18

A Sample Program

reserved words

Reswords.doc

RESWORDS2.doc

Mr. Dave Clausen 19

Writing Code in C++

 Executable Statement

– basic unit of grammar

• library identifiers, programmer defined

identifiers, reserved words, numbers and/or

characters

– A semicolon almost always terminates a

statement

• usually not needed AFTER a right curly brace }

– Exception: declaring user defined types.

 Programs should be readable

noformat.cpp format.cpp

noformat.cpp
format.cpp

Mr. Dave Clausen 20

Simple Data Types

 Type int

– represent integers or whole numbers

– Some rules to follow:

• Plus signs do not need to be written before the
number

• Minus signs must be written when using negative #’s

• Decimal points cannot be used

• Commas cannot be used

– A comma is a character and will “crash” your program, no
joke.

• Leading zeros should be avoided (octal or base 8 #’s)

• limits.h int_max int_min

Mr. Dave Clausen 21

Simple Data Types

 Type double

– used to represent real numbers

– many programmers use type float, the AP

Board likes the extra precision of double

– avoid leading zeros, trailing zeros are ignored

– limits.h, float.h

• dbl_max, dbl_min, dbl_dig

Mr. Dave Clausen 22

Simple Data Types

 Type char

– used to represent character data

• a single character which includes a space

• See Appendix 4 in our text

– must be enclosed in single quotes eg. ‘d’

– Escape sequences treated as single char

• ‘\n’ newline

• ‘\’’ apostrophe

• ‘\”’ double quote

• ‘\t’ tab

• ‘\\’ pathnames for files

Mr. Dave Clausen 23

Simple Data Types

 Strings

– used to represent textual information

– string constants must be enclosed in double

quotation marks eg. “Hello world!”

• empty string “”

• new line char or string “\n”

• “the word \”hello\”” (puts quotes around

“hello”)

Mr. Dave Clausen 24

Output

 #include <iostream>

– cout pronounced see-out

– cout << ‘\n’;

– cout << endl;

– cout << “Hello world!”;

– cout << “Hello world!” << endl;

printadd2.cpp

PRINTADD2.CPP

Mr. Dave Clausen 25

Formatting Integers

 #include <iomanip>
(input/output manipulators)

 right justify output

– cout << setiosflags (ios::right);

 specify field width

– cout << setw(10) << 100 (output:

*******100, where * represents a space.)

 specify decimal precision

– cout<<setiosflags (ios::fixed | ios::showpoint |

ios::right)<< setprecision (2);

Mr. Dave Clausen 26

Setprecision

 Precision is set and will remain until the

programmer specifies a new precision

– The decimal uses one position

– Trailing zeros are printed the specified number

of places

– Leading plus signs are omitted

– Leading minus signs are printed and use 1

position

– Digits are rounded, not truncated.

Mr. Dave Clausen 27

Test Programs

 Test programs are short programs written to

provide an answer to a specific question.

 You can try something out

 Play with C+ +

 Ask “what if” questions

 Experiment: try and see

