Chapter 6:
Repetition Statements

Mr. Dave Clausen
La Canada High School

Mr. Dave Clausen

3 Objectives

¢ Design and

¢ Understanc
loop and a

test repetition statements

the difference between a pretest
posttest loop

¢ Understanc

the difference between a fixed

repetition loop and a variable condition loop
¢ Choose a for loop, a while loop, or a do-

while loop

for a given problem

Mr. Dave Clausen 2

) Repetition Statements

¢ Our third control structure: iteration or
repetition (completes our 3 control
structures: sequence, selection, iteration)

¢ Two main categories of repetition:
< definite loop
repeats a predetermined number of times

< indefinite loop

+ repeats a number of times that has not been
predetermined.

Mr. Dave Clausen

) Repetition Forms

¢ Three loop types:
» for<a definite number of times> <do action>
+ while<condition is true> <do action>
+ do<action> while <condition is true>

¢ Three basic constructs
+ A variable is assigned some value.

+ The value of the variable changes at some point in the
loop.

+ The loop repeats until the variable reaches a
predetermined value, the program then executes the
next statement after the loop.

Mr. Dave Clausen

3 Pretest Loops

¢ Pretest Loop (Entrance Controlled Loops)

< a loop where the control
expression) Is tested BE

¢ If the condition Is true, t

condition (Boolean
~ORE the loop.

ne loop Is executed.

¢ If the condition iIs false t

ne loop Is not executed

¢ Therefore, It Is possible that these loops may not

be executed at all (when

the condition iIs False)

& There are two pretest loops

o for loop
+ while loop

Mr. Dave Clausen 5

¥ Post Test Loops

¢ Post Test Loops (exit-controlled loop)

< a loop where the control condition (Boolean
expression) is tested AFTER the loop has been
executed.

¢ If the condition Is true, the loop Is executed again.

¢ If the condition Is false the loop Is not executed
again

¢ Therefore, this type of loop will always be
executed at least once.

¢ There 1s one post test loop: do...while

Mr. Dave Clausen 6

3 Fixed repetition loops

¢ Fixed repetition loop

< a loop used when you know in advance how
many repetitions need to be executed.

+ also known as a definite loop:

+ (you know the definite number of repetitions
necessary to solve the problem)

¢ the “for” loop 1s:
+ a fixed repetition loop
¢ and a pretest loop

Mr. Dave Clausen

v Variable Condition Loops

¢ Variable Condition Loops

¢ needed to solve problems where the conditions
change within the body of the loop.

¢ Also called indefinite loops:

+ the loop repeats an indefinite number of iterations until
some condition 1s met, or while some condition IS met.

+ The loop terminates depending upon conditions
Involving sentinel values, Boolean flags, arithmetic
expressions, end of line, or end of file markers.

¢ While and do...while loops are variable condition
loops.

Mr. Dave Clausen 8

3 The for Loop

¢ General form:

for(<initialization expression>; <termination conditon>; <update expression>)

<statement>

for (counter = 1; counter <= 10; counter = counter+1) /iLoop Heading

cout<< counter << endl; //Loop body

Mr. Dave Clausen 9

Syntax and Semantics of
*the for Loop

<statement>

/////,for (<initializer>; <termination>; <update>)

Loop header

—

initializer

T Loop body

false
*<_termination

true l

statement

update

Mr. Dave Clausen

10

3 The for Loop Internal Logic

¢ The control variable is assigned an initial
value in the initialization expression

¢ The termination condition is evaluated

¢ If termination condition Is true

< the body of the loop Is executed and the update
expression Is evaluated

¢ If the termination condition is false

¢ program control Is transferred to the first
statement following the loop.

Mr. Dave Clausen 11

¥ Increment Operator

¢ The Increment operator adds 1 to the
variable
¢ Instead of X = x + 1 you can write as + +X

< if the + + occurs before the x (+ + X) it is called
a prefix operator

¢ If the + + occurs after the x (x+ +) it Is called a
postfix operator

¢ Our text uses the prefix operator
¢ But let’s use the postfix operator, x++

Mr. Dave Clausen 12

¥ Decrement Operator

¢ The Decrement operator subtracts 1 from
the variable
¢ Instead of X = x - 1 you can write as --X

& if the -- occurs before the x (-- x) 1t is called a
prefix operator

& If the -- occurs after the x (x--) 1t Is called a
postfix operator

¢ Our text uses the prefix operator
¢ But let’s use the postfix operator, x- -

Mr. Dave Clausen 13

Accumulator
*

¢ An accumulator is a variable used to keep a
running total or sum of successive values of
another variable

¢ 1.6. sum = sum + grade;

+ you should initialize the value of the accumulator
before the loop: sum = 0;

+ the accumulator statement occurs in the body of the
loop

//counter --> means loop control variable
sum=0;
for (counter = 1; counter <= 100; counter++)

sum = sum + counter ;
Mr. Dave Clausen 14

¥ Scope of Loop Control Variable

¢ The loop control variable must be declared
before it Is used.

& The rules for the scope of the variable apply here
¢ If the variable i1s only going to be used as a
loop counter, and for nothing else...

¢ You can limit 1t’s scope by declaring 1t when 1t 1s
Initialized in the loop

for(int counter = 1; counter <=10; counter ++)
cout<< counter <<endl:
// counter IS only referenced in loop

Mr. Dave Clausen 15

For L
v or Loops

¢ For loops can count down (decrement)
for (int counter=20; counter>=15; counter--)
cout<< counter << endl;

¢ For loops can count by factors other than one
for(int counter=2; counter<=10; counter=counter+2)
cout<< counter << endl;

& Style

+ Indent the body of the loop, use blank lines before and
after, and use comments.

Mr. Dave Clausen 16

3 While Loops

¢ General form:
while (<Boolean expression>)
<statement>

¢ The parentheses around the Boolean is
required.

¢ If the condition Is true the body of the loop Is
executed again.

¢ If the loop condition is false, the program
continues with the first statement after the loop.

¢ A while loop may not be executed... why?

Mr. Dave Clausen 17

Syntax and Semantics of
* while Statements

while (<Boolean expression>)
<statement>

while (<Boolean expression>)
{
<statement 1>

<statement n>

Mr. Dave Clausen

true

false

statement

A

18

3 While Loops: Discussion

< The condition can be any valid Boolean
Expression

L)
P

L)

ne Boolean Expression must have a value
RIOR to entering the loop.

ne body of the loop can be a compound

statement or a simple statement.

+ The loop control condition needs to change in the
loop body

+ If the condition is true and the condition is not changed

or updated, an infinite loop could result.

¢ If the condition is true and never becomes false, this

results in an infinite loop also.

Mr. Dave Clausen 19

3 The while Loop Accumulator

Write code that computes the sum of the
numbers between 1 and 10.

int counter = 1;
int sum = 0;
while (counter <= 10)

{

sum = sum + counter;
counter = counter + 1;

Mr. Dave Clausen

20

3 Sentinel Values and Counters

¢ Sentinel Value

¢ A value that determines the end of a set of data,
or the end of a process in an indefinite loop.

P309EX1Dev.CPP
¢ While loops may be repeated an indefinite

number of times.

+ It Is common to count the number of times the loop
repeats.

+ Initialize this “counter” before the loop
+ Increment the counter inside the loop

Mr. Dave Clausen 21

P309EX1Dev.CPP

do...while loops

& General form:
do
{
<sStatement>

}while (<Boolean expression>)

+ The Boolean expression must have a value before it is
executed at the end of the loop.

«+ If the loop condition is true, control is transferred back
to the top of the loop.

+ If the loop condition is false, the program continues
with the first statement after the loop.

+ A do...while loop will always be executed at least
once... why?

Mr. Dave Clausen 22

Syntax and Semantics of
* do...while Statements

do
{

<statement>
}while (<Boolean expression>);

statement

do
{

<statement 1>

<statement n> true
} while (<Boolean expression>) ; false

Mr. Dave Clausen

23

K do...while Loops: Discussion

+ The condition can be any valid Boolean
Expression

+ The Boolean Expression must have a value PRIOR
to exiting the loop.

+ The body of the loop is treated as a compound
statement even If it is a simple statement. { }

+ The loop control condition needs to eventually
change to FALSE in the loop body

+ If the condition never becomes false, this results in an
Infinite loop.

Mr. Dave Clausen 24

3 Choosing which loop to use.

¢ for loop

¢ when a loop Is to be executed a predetermined
number of times.

¢ while loop
¢ a loop repeated an indefinite number of times
check the condition before the loop
< a loop that might not be executed (reading data)

¢ do...while
¢ a loop repeated an indefinite number of times
check the condition at the end of the loop

Mr. Dave Clausen 25

3 Designing Correct Loops

¢ Initialize all variables properly

¢ Plan how many iterations, then set the counter
and the limit accordingly

¢ Check the logic of the termination condition

¢ Update the loop control variable properly

Mr. Dave Clausen 26

) Off-by-One Error

int counter = 1;
while (counter <= 10)
{ // Executes 10 passes

<do something>
counter++;

int counter = 1;
while (counter < 10)
{ // Executes 9 passes

<do something>
counter++;

Mr. Dave Clausen

27

3 Infinite Loop

int counter = 1;
while (counter <= 10)
{ // Executes 5 passes

<do something>
counter = counter + 2;

}

int counter = 1;
while (counter !'= 10)
{ // Runs forever

<do something>
counter = counter + 2;

In general, avoid using !'= in loop termination conditions.

Mr. Dave Clausen 28

3 Testing Loops

¢ Can vary the limit or the control variable, or
both

¢ Use a negative value, zero, and a positive
value

¢ Display an output trace 1f things aren’t
working

Mr. Dave Clausen 29

3 Error Trapping

//”’primed” while loop

cout<<"Enter a score between “"<<low double<<*and “<<high double;
cin>>score;

while((score < low_double) || (score > high_double))

{

cout<<“Invalid score, try again.”;

//update the value to be tested in the Boolean Expression

cout<<"Enter a score between “<<low double<<* and
“<<high double;

cin>>score;

Mr. Dave Clausen 30

3 Nested Loops

Nested loop

¢ when a loop Is one of the statements within the
body of another loop.

for (k=1; k<=5; ++Kk) MULTABDev.CPP
for (J=1,; J]<=3; ++))
cout<<(k+j)<<endl;
+ Each loop needs to have its own level of indenting.

+ Use comments to explain each loop

+ Blank lines around each loop can make It easier to
read

Mr. Dave Clausen 31

MULTABDev.CPP

) Repetition and Selection

¢ The use of an If statement within a loop to
look for a certain condition In each Iteration
of the loop.
¢ Examples:
to generate a list of Pythagorean Triples

+ to perform a calculation for each employee

+ to find prime numbers
¢ let’s look at our Case Study program for Chapter 6

PRIMESDev.CPP

Mr. Dave Clausen 32

PRIMESDev.CPP

> Loop Verification

¢ Loop verification

¢ making sure that the loop performs its intended
job.

¢ Input assertions

< preconditions stating what Is true before the
loop Is executed

¢ Output assertions

post conditions stating what Is true after the
loop Is executed

Mr. Dave Clausen 33

v Invariant and variant assertions

¢ Loop Invariant

states a relationship among variables that remains the
same throughout all repetitions of the loop.

+ A statement that Is true both:
o before the loop is entered, and
o after each iteration of the loop

¢ Loop Variant

+ an assertion that changes between the first and last
Iterations of the loop

+should be stated in a way that guarantees that the loop
IS exited.

+ Should address the loop variable being incremented or
decremented

Mr. Dave Clausen 34

