
Mr. Dave Clausen 1

Mr. Dave Clausen

La Cañada High School

Chapter 6:

Repetition Statements

Objectives

Design and test repetition statements

Understand the difference between a pretest

loop and a posttest loop

Understand the difference between a fixed

repetition loop and a variable condition loop

Choose a for loop, a while loop, or a do-

while loop for a given problem

Mr. Dave Clausen 2

Mr. Dave Clausen 3

Repetition Statements

Our third control structure: iteration or

repetition (completes our 3 control

structures: sequence, selection, iteration)

Two main categories of repetition:

definite loop

 repeats a predetermined number of times

indefinite loop

 repeats a number of times that has not been

predetermined.

Mr. Dave Clausen 4

Repetition Forms

Three loop types:

 for<a definite number of times> <do action>

while<condition is true> <do action>

do<action> while <condition is true>

Three basic constructs

A variable is assigned some value.

The value of the variable changes at some point in the

loop.

The loop repeats until the variable reaches a

predetermined value, the program then executes the

next statement after the loop.

Mr. Dave Clausen 5

Pretest Loops

Pretest Loop (Entrance Controlled Loops)

a loop where the control condition (Boolean

expression) is tested BEFORE the loop.

If the condition is true, the loop is executed.

If the condition is false the loop is not executed

Therefore, it is possible that these loops may not

be executed at all (when the condition is False)

There are two pretest loops

 for loop

while loop

Mr. Dave Clausen 6

Post Test Loops

Post Test Loops (exit-controlled loop)

a loop where the control condition (Boolean

expression) is tested AFTER the loop has been

executed.

If the condition is true, the loop is executed again.

If the condition is false the loop is not executed

again

Therefore, this type of loop will always be

executed at least once.

There is one post test loop: do…while

Mr. Dave Clausen 7

Fixed repetition loops

Fixed repetition loop

a loop used when you know in advance how

many repetitions need to be executed.

also known as a definite loop:

 (you know the definite number of repetitions

necessary to solve the problem)

the “for” loop is:

a fixed repetition loop

and a pretest loop

Mr. Dave Clausen 8

Variable Condition Loops

Variable Condition Loops

needed to solve problems where the conditions

change within the body of the loop.

Also called indefinite loops:

 the loop repeats an indefinite number of iterations until

some condition is met, or while some condition is met.

The loop terminates depending upon conditions

involving sentinel values, Boolean flags, arithmetic

expressions, end of line, or end of file markers.

While and do…while loops are variable condition

loops.

Mr. Dave Clausen 9

The for Loop

General form:
for(<initialization expression>; <termination conditon>; <update expression>)

<statement>

for (counter = 1; counter <= 10; counter = counter+1) //Loop Heading

cout<< counter << endl; //Loop body

Mr. Dave Clausen 10

Syntax and Semantics of
the for Loop

for (<initializer>; <termination>; <update>)

<statement>

termination

statement

true

false

initializer

update

Loop header
Loop body

Mr. Dave Clausen 11

The for Loop Internal Logic

The control variable is assigned an initial

value in the initialization expression

The termination condition is evaluated

 If termination condition is true

the body of the loop is executed and the update

expression is evaluated

 If the termination condition is false

program control is transferred to the first

statement following the loop.

Mr. Dave Clausen 12

Increment Operator

The Increment operator adds 1 to the

variable

 Instead of x = x + 1 you can write as + +x

if the + + occurs before the x (+ + x) it is called

a prefix operator

if the + + occurs after the x (x+ +) it is called a

postfix operator

Our text uses the prefix operator

But let’s use the postfix operator, x++

Mr. Dave Clausen 13

Decrement Operator

The Decrement operator subtracts 1 from

the variable

 Instead of x = x - 1 you can write as --x

if the -- occurs before the x (-- x) it is called a

prefix operator

if the -- occurs after the x (x--) it is called a

postfix operator

Our text uses the prefix operator

But let’s use the postfix operator, x- -

Mr. Dave Clausen 14

Accumulator

An accumulator is a variable used to keep a

running total or sum of successive values of

another variable

 i.e. sum = sum + grade;

you should initialize the value of the accumulator

before the loop: sum = 0;

 the accumulator statement occurs in the body of the

loop

//counter --> means loop control variable

sum=0;

for (counter = 1; counter <= 100; counter++)

sum = sum + counter ;

Mr. Dave Clausen 15

Scope of Loop Control Variable

The loop control variable must be declared
before it is used.

The rules for the scope of the variable apply here

 If the variable is only going to be used as a
loop counter, and for nothing else…

You can limit it’s scope by declaring it when it is
initialized in the loop

for(int counter = 1; counter <=10; counter ++)

cout<< counter <<endl;

// counter is only referenced in loop

Mr. Dave Clausen 16

For Loops

For loops can count down (decrement)

for (int counter=20; counter>=15; counter--)

cout<< counter << endl;

For loops can count by factors other than one

for(int counter=2; counter<=10; counter=counter+2)

cout<< counter << endl;

Style

 Indent the body of the loop, use blank lines before and

after, and use comments.

Mr. Dave Clausen 17

While Loops

General form:

while (<Boolean expression>)

<statement>

The parentheses around the Boolean is

required.

If the condition is true the body of the loop is

executed again.

If the loop condition is false, the program

continues with the first statement after the loop.

A while loop may not be executed… why?

Mr. Dave Clausen 18

Syntax and Semantics of
while Statements

while (<Boolean expression>)

<statement>

while (<Boolean expression>)

{

<statement 1>

.

<statement n>

}

?

statement

true

false

Mr. Dave Clausen 19

While Loops: Discussion
The condition can be any valid Boolean

Expression

The Boolean Expression must have a value

PRIOR to entering the loop.

The body of the loop can be a compound

statement or a simple statement.

The loop control condition needs to change in the

loop body

 If the condition is true and the condition is not changed

or updated, an infinite loop could result.

 If the condition is true and never becomes false, this

results in an infinite loop also.

Mr. Dave Clausen 20

The while Loop Accumulator

Write code that computes the sum of the

numbers between 1 and 10.

int counter = 1;

int sum = 0;

while (counter <= 10)

{

sum = sum + counter;

counter = counter + 1;

}

Mr. Dave Clausen 21

Sentinel Values and Counters

Sentinel Value

A value that determines the end of a set of data,
or the end of a process in an indefinite loop.

P309EX1Dev.CPP

While loops may be repeated an indefinite
number of times.

 It is common to count the number of times the loop
repeats.

 Initialize this “counter” before the loop

 Increment the counter inside the loop

P309EX1Dev.CPP

Mr. Dave Clausen 22

do…while loops
General form:

do

{

<statement>

}while (<Boolean expression>)

The Boolean expression must have a value before it is

executed at the end of the loop.

 If the loop condition is true, control is transferred back

to the top of the loop.

 If the loop condition is false, the program continues

with the first statement after the loop.

A do...while loop will always be executed at least

once… why?

Mr. Dave Clausen 23

Syntax and Semantics of
do…while Statements

do

{

<statement>

}while (<Boolean expression>);

do

{

<statement 1>

.

<statement n>

} while (<Boolean expression>);

statement

false

?
true

Mr. Dave Clausen 24

The condition can be any valid Boolean

Expression

The Boolean Expression must have a value PRIOR

to exiting the loop.

The body of the loop is treated as a compound

statement even if it is a simple statement. { }

The loop control condition needs to eventually

change to FALSE in the loop body

 If the condition never becomes false, this results in an

infinite loop.

do…while Loops: Discussion

Mr. Dave Clausen 25

Choosing which loop to use.
 for loop

when a loop is to be executed a predetermined

number of times.

while loop

a loop repeated an indefinite number of times

check the condition before the loop

a loop that might not be executed (reading data)

do...while

a loop repeated an indefinite number of times

check the condition at the end of the loop

Mr. Dave Clausen 26

Designing Correct Loops

 Initialize all variables properly

Plan how many iterations, then set the counter

and the limit accordingly

Check the logic of the termination condition

Update the loop control variable properly

Mr. Dave Clausen 27

Off-by-One Error

int counter = 1;

while (counter <= 10)

{ // Executes 10 passes

<do something>

counter++;

}

int counter = 1;

while (counter < 10)

{ // Executes 9 passes

<do something>

counter++;

}

Mr. Dave Clausen 28

Infinite Loop

int counter = 1;

while (counter <= 10)

{ // Executes 5 passes

<do something>

counter = counter + 2;

}

int counter = 1;

while (counter != 10)

{ // Runs forever

<do something>

counter = counter + 2;

}

In general, avoid using != in loop termination conditions.

Mr. Dave Clausen 29

Testing Loops

Can vary the limit or the control variable, or
both

Use a negative value, zero, and a positive
value

Display an output trace if things aren’t
working

Mr. Dave Clausen 30

Error Trapping

//”primed” while loop

cout<<"Enter a score between ”<<low_double<<“ and “<<high_double;

cin>>score;

while((score < low_double) || (score > high_double))

{

cout<<“Invalid score, try again.”;

//update the value to be tested in the Boolean Expression

cout<<"Enter a score between ”<<low_double<<“ and

“<<high_double;

cin>>score;

}

Mr. Dave Clausen 31

Nested Loops

Nested loop

when a loop is one of the statements within the

body of another loop.

for (k=1; k<=5; ++k)

for (j=1; j<=3; ++j)

cout<<(k+j)<<endl;

Each loop needs to have its own level of indenting.

Use comments to explain each loop

Blank lines around each loop can make it easier to

read

MULTABDev.CPP

MULTABDev.CPP

Mr. Dave Clausen 32

Repetition and Selection

The use of an if statement within a loop to

look for a certain condition in each iteration

of the loop.

Examples:

 to generate a list of Pythagorean Triples

 to perform a calculation for each employee

 to find prime numbers

 let’s look at our Case Study program for Chapter 6

PRIMESDev.CPP

PRIMESDev.CPP

Mr. Dave Clausen 33

Loop Verification

Loop verification

making sure that the loop performs its intended

job.

 Input assertions

preconditions stating what is true before the

loop is executed

Output assertions

post conditions stating what is true after the

loop is executed

Mr. Dave Clausen 34

Invariant and variant assertions

Loop Invariant

states a relationship among variables that remains the

same throughout all repetitions of the loop.

A statement that is true both:

 before the loop is entered, and

 after each iteration of the loop

Loop Variant

an assertion that changes between the first and last

iterations of the loop

should be stated in a way that guarantees that the loop

is exited.

Should address the loop variable being incremented or

decremented

