The Insertion
Sort

Mr. Dave Clausen
La Canada High School

Objectives

« Understand and use the Insertion Sort to
sort data in a program.

» Understand and know Big-O notation for
the Insertion Sort.

Mr. Dave Clausen

Insertion Sort Description

The Insertion sort uses a vector's partial ordering. On
the kth pass, the kth item should be inserted into its
place among the first k items in the vector.

After the kth pass (k starting at 1), the first k items of
the vector should be In sorted order.

This is like the way that people pick up playing cards
and order them in their hands. When holding the first
(k - 1) cards in order, a person will pick up the kth
card and compare it with cards already held until its
sorted spot Is found.

Mr. Dave Clausen 3

Insertion Sort Algorithm

For each k from 1 ton - 1 (k is the index of vector element to
insert)

Set item to insert to v[k]

Set] to k - 1

(] starts at k - 1 and 1s decremented until 1nsertion position
is found)

While (insertion position not found) and (not beginning of
vector)

If item to insert < v[J]
Move v[]] to index position j + 1
Decrement j by 1

Else
The insertion position has been found

item to insert should be positioned at index j + 1

Mr. Dave Clausen 4

C + + Code For Insertion Sort

void Insertion Sort (vector<int> &v)
{
int item to insert, J; // On the kth pass, insert item k into its correct
bool still looking; // position among the first k entries in vector.
for (int k = 1; k < v.size(); ++k)
{ // Walk backwards through list, looking for slot to insert v[k]
item to insert = v[k];
J =k - 1;
still looking = true;
while ((j >= 0) && still looking)
if (item to insert < v[J])

{

v[ij + 1] = vI[Jl;
__j;
}
else
still looking = false; // Upon leaving loop, j + 1 is the index
v[j + 1] = item to insert; // where item to insert belongs

Mr. Dave Clausen 5

Insertion Sort Example

The Unsorted Vector: 80
40

For each pass, the index | begins at 32
the (k - 1)st item and moves that 84
item to position j + 1 until we find 61

the Insertion point for what was

originally the kth item.

We start with k =1
and set] = k-1 or O (zero)

Mr. Dave Clausen

The First Pass

K=2
m— Insert 40, m Insert 40
compare / m m
3— & move 39
84 84 84
6l 61 61

Iitem_to_insert
40

Mr. Dave Clausen

61

Insert 32,

compare / 80

& move

The Second Pass

84

mCompare

30 & move

61

40
80
84

61

Iitem_to_inse
32

Mr. Dave Clausen

rt

Insert 32E

40
80
84
61

The Third Pass

Insert 847?

compare
& stop

Iitem_to_insert
84

Mr. Dave Clausen

The Fourth Pass

K=5
z
- Compare
= 40 & stop
80 ompare [e{0) Insert 61

Insert 61, 84 SMOVE

compare / 84

& move

80

84

Iitem_to_insert
61

Mr. Dave Clausen

What “Moving” Means

item_to_insert

Place the second element
Into the variable
item_to_Insert.

Mr. Dave Clausen

80

40

32

84

61

11

What “Moving” Means

item_to_insert

Replace the second element
with the value of the first
element.

Mr. Dave Clausen

80
801

32

84

61

12

What “Moving” Means

item_to_iV

Replace the first element
(in this example) with the
variable item_to_insert.

Mr. Dave Clausen

40

80

32

84

61

13

C + + Examples of
The Insertion Sort

On the Net:
http://compsci.exeter.edu/Winter99/CS320/Resources/sortDemo.html

http://www.aist.qo.|p/ETL/~suzaki/AlgorithmAnimation/index.html

Mr. Dave Clausen 14

http://compsci.exeter.edu/Winter99/CS320/Resources/sortDemo.html
http://www.aist.go.jp/ETL/~suzaki/AlgorithmAnimation/index.html

Big - O Notation

Big - O notation Is used to describe the efficiency
of a search or sort. The actual time necessary to
complete the sort varies according to the speed of

your system. Big - O notation is an approximate
mathematical formula to determine how many
operations are necessary to perform the search or
sort. The Big - O notation for the Insertion Sort Is
O(n?), because it takes approximately n? passes to
sort the “n” elements.

Mr. Dave Clausen 15

