The Sequential Search
(Linear Search)

Dave Clausen
La Canada High School



Objectives

« Understand and use the Linear Search to
search through data in a program.

» Understand and know Big-O notation for
the Linear Search.

Mr. Dave Clausen



The Sequential Search
Description

The Sequential (or Linear) Search examines
the first element in the list and then
examines each “sequential” element 1n the
list (in the order that they appear) until a
match Is found. This match could be a
desired word that you are searching for, or
the minimum number in the list.

Mr. Dave Clausen 3



The Sequential Search
Variations

Variations on this include: searching a sorted list
for the first occurrence of a data value, searching a
sorted list for all occurrences of a data value (or
counting how many matches occur: inventory), or
searching an unsorted list for the first occurrence
or every occurrence of a data value.

You may Indicate that a match has been found, the
number of matches that have been found, or the
Indices where all the matches have been found.

Mr. Dave Clausen 4



A Sequential Search Algorithm

Set index to O (zero)
Set found to false
while index < length and not found do

— If list[index] Is equal to target then
« set found to be true

— else
* Increment the index by 1 (one)

If found then

— return index

else
— return -1 (negative one)

Mr. Dave Clausen



A Sequential Search C + +

Int Sequential_Search(int target, vector <int> &list, int length)
{
Int index = 0;
bool found = false;
while((index < length) && ! found)
If (list[index] = = target)
found = true;
else
++index;
If (found)
return index;
else
return -1

Mr. Dave Clausen



Revised Sequential Search
Algorithm

Set 1ndex to 0
Set found to false
While 1ndex < length and not found do
If v[index] 1s equal to target then
Return 1ndex
Else
Increment the 1ndex by 1

Return -1

Mr. Dave Clausen



Revised Sequential Search C + +

int search(int target,
const vector<int> &v)

int index = 0O;
while (index < v.size())
if (v[index] = = target)
return index;
else
++index;

return -1;

Mr. Dave Clausen



The Sequential Search C + +
Variation #1

If the list Is sorted, we can improve this code by
adding the following extended If statement:

If (list[index] = = target)
found = true:
else If (list[index] > target) //target is not in list
Index = length;
else
++index;

Mr. Dave Clausen



The Sequential Search C + +
Variation #2

Whether the list 1s sorted or not, we can return the
number of occurrences of the target in the list:

Int Occurrences_Of (int target, const vector <int> &list)

1
Int count = 0;
for(int index = 0; index < list.size(); ++index)
If (list[index] = = target)
+ + count;
return count;

Mr. Dave Clausen 10



The Sequential Search C + +
Variation #3

Whether the list is sorted or not, we can return the
Indices of occurrences of the target in the list:

void Indices_Of (int target, const vector<int>
&list)

{
for(int index = 0; index < list.size(); ++index)
If (list[index] = = target)

cout<< target << ““ located at index # *
<<index<<endl;

Mr. Dave Clausen 11



A Sequential Search Example

Target ?

We start by searching for the

target at the first element in the

List and then proceed to
examine each element in the

order in which they appear.

Mr. Dave Clausen

12



A Sequential Search Example

Target ?

Mr. Dave Clausen

13



A Sequential Search Example

Target ?

Mr. Dave Clausen

14



A Sequential Search Example

Target ?

Mr. Dave Clausen

15



A Sequential Search Example

Once the target data item has

been found, you may return a
Boolean true, or the index

where It was found.

Target !

Mr. Dave Clausen

16



Big - O Notation

Big - O notation Is used to describe the efficiency
of a search or sort. The actual time necessary to
complete the sort varies according to the speed of

your system. Big - O notation is an approximate
mathematical formula to determine how many
operations are necessary to perform the search or
sort. The Big - O notation for the Sequential
Search i1s O(n), because It takes approximately n
passes to find the target element.

Mr. Dave Clausen

17



