o

N \m,/ —

O

D -
I_I m m 7)
1 = = M
@) o = ol
TErsg o
=2 4] | A
o v U S T |2
= E W 1

5 s

The Text Screen -
—

The text screen contains 25 lines with a
capacity of holding 80 columns of textual -
characters.

80 X 25 = 2,000 positions -

But there are actually over 2,000 positions on
a display screen.

The screen consists of pixels (picture —_—
elements) that 1t uses to represent the textual
characters and symbols.

4/26/2011 Mr. Dave Clausen 2

Graphics Setup

There are five steps that you need to
follow to use graphics in Turbo C++ 3.0 .
IDJONY

1. Tell the compiler that graphics commands
will be used. -

2. Have C++ find out what kind of graphics card
your computer uses.

3. Initialize the Graphics Screen

4. Tell the system where to find Borland’s —
Graphics routines.

5. Close the graphics screen after you have
finished drawing your graphics.

4/26/2011 Mr. Dave Clausen 3

Graphics Setup 2 —

1) To tell the compiler that graphics -
commands will be used, include the -
preprocessor directive:

#include <graphics.h> —

2) To have C++ find out what kind of graphics
card your computer uses.
* declare two variables of type Integer
int graphdriver = DETECT, graphmode; -
I require that you use the following command:

int graphdriver = VGA, graphmode= VGAHI;
-

4/26/2011 Mr. Dave Clausen 4

Graphics Setup 3

* 3 & 4) To initialize the graphics screen and
tell the system where to find Borland’s Graphics
routines (BGI) use the following command in the
int main() function:

initgraph(&graphdriver, &graphmode, “C:\\bcS\\bgi”); N

After you are finished drawing, you need to use the
getch(); command to leave the picture on the
screen (Press any key to continue...). o
This requires: #include <conio.h>

* 5) Then close the graphics screen, using:

closegraph(); P

4/26/2011 Mr. Dave Clausen 5

4/26/2011

Fundamentals
of
Graphics

The Graphics Screen.
Color Options.
Graphics Mode.
Drawing Lines

Line Style

Clearing the Screen.

Plotting Points.

Mr. Dave Clausen

The Graphics Screen

If you have a VGA graphics card or better

in your computer, then the graphics screen —
has 640 pixels across and 480 pixels

down. —

640 X 480 = 307,200 pixels
The upper left corner is position (0, 0)

The lower right corner is position
(639, 479)

« Remember, the computer starts counting with

Zero. —

4/26/2011 Mr. Dave Clausen 7

The Graphics Screen -

Pimensions
-
) (639, 0)
-
_—
(0, 479) (639, 479)
-

4/26/2011 Mr. Dave Clausen 8

Background
Color Options

You can select the color of the background.

This 1s done before drawing anything in the
foreground (otherwise your drawing will g
disappear.)

To select the background color use the
command.

setbkcolor(number); a—

» Where (number) is a numeric constant from 0
through 15, or the symbolic constant that represents
the color.

4/26/2011 Mr. Dave Clausen 9

Color Options -
The number of colors depend on the graphics
mode you select using Turbo C++. —

e The detault settings allow for 16 color choices.

You select a foreground or “drawing” color by™™
using the following command:

setcolor(number);

« Where (number) 1s a numeric constant from O
through 15, or the symbolic constant that
represents the color.

graphinfo.cpp

4/26/2011 Mr. Dave Clausen 10

Color Names -

Here are the color numbers and names: -
0=BLACK 8 =DARKGRAY —
I'=BLUE 9=TLIGHTBLUE
2 =GREEN 10 = LIGHTGREEN —
3=CYAN 11 =LIGHTCYAN e
4=RED 12 = LIGHTRED
5 =MAGENTA 13 = LIGHTMAGENTA
6= BROWN 14 = YELLOW -
7=LIGHTGRAY 15 =WHITE

4/26/2011 Mr. Dave Clausen 11

Drawing Lines —

—
The Current Pointer.
The current pointer is an invisible pointer =%
that keeps track of the current pixel

position. It 1s the equivalent of the visible
cursor 1n text mode.

4/26/2011 Mr. Dave Clausen 12

Drawing Lines 2
To move the pointer to a location on the™®
graph without drawing anything, use the
command:

moveto (X,Y);
" This i1s like PenUp (PU) in LOGO

s To draw lines from the current pointer’s
position to another point on the graph, use
the command:

s lineto (X,Y);
* This 1s like PenDown (PD) in LOGO or SetXY (x,y)
grtmplte.cpp

4/26/2011 Mr. Dave Clausen

13

4/26/2011

Graphics Figures
[.1nes *Arcs
*Rectangles *Ellipses
*Circles *Points

Mr. Dave Clausen

14

Lines, The Easy Way

Instead of using the commands: moveto
and lineto, we can draw a line using one
command:

line(x1, y1, x2, y2);

The points (x1, y1) describe the beginning
of the line, while (x2, y2) describes the
endpoint of the line.

The numbers x1, y1, x2, y2 are integers.

4/26/2011 Mr. Dave Clausen

15

Rectangles -

Rectangles can be drawn in different ways
using lineto, moveto, moverel, and linerel.
But an easier and faster way 1s using the
Rectangle procedure which draws a rectangle

in the default color and line style with the
upper left at X1, Y1 and lower right X2, Y2.

rectangle (X;, Y1, X5, ¥»);

4/26/2011 Mr. Dave Clausen

16

Circles

Circles can be drawn using the circle
procedure.

This draws a circle in the default color and
line style with center at X, Y, radius in the X
direction of Xradius, and corresponding Y
radius.

circle (X, y, radius);

4/26/2011 Mr. Dave Clausen

7

Arcs —

This procedure draws a circular arc in the

default color and line style based upon a circle ™ pm
with center X, Y and given X radius.

The arc begins at an angle of StartAngle and B
follows the circle to EndAngle. The angles are
measured 1n degrees from 0 to 360 counter-
clockwise where 0 degrees 1s directly right.

arc (X, y, startangle, endangle, radius);

4/26/2011 Mr. Dave Clausen 18

|| ! l
90
nding-Angl - Starting-Angle- —
\\ // ﬂ
\ ///
180 = 0

Ellipses -

Draws an elliptical arc in the default color and

line style based upon an ellipse with center X, -
Y and given radii.

The arc begins at an angle to Start Angle and
follows the ellipse to End Angle. The angles

are measured in degrees from 0 to 360 counter-
clockwise where 0 degrees 1s directly right.

ellipse (x, y, startangle , endangle, x radius, y radius);

4/26/2011 Mr. Dave Clausen 20

Plotting Points
The Maximum value for X can be
found using:

getmaxx()

The Maximum value for Y can be found
using:

getmaxy/()

To Plot a point:

putpixel (x value, y value, color);
For example: putpixel (100, 100, WHITE);

4/26/2011 Mr. Dave Clausen

2]

Sample Program

Let’s look at a program with a line,
rectangle, circle, arc, ellipse, and a point. |8

Objects.cpp

4/26/2011 Mr. Dave Clausen 22

Line Style p—

Setting the line style.

All lines have a default line mode, but
Turbo C++ allows the user to specify three
characteristics of a line:

style, pattern, and thickness.

Use the command:

setlinestyle (style, pattern, thickness);

4/26/2011 Mr. Dave Clausen

234

Line Style —
and '

Thickness Names —

Here are the names of the line stylesand @
thickness: |

Line Style Thickness
SOLID LINE NORM WIDTH
DOTTED LINE -

CENTER LINE THICK WIDTH
DASHED LINE
USERBIT LINE

4/26/2011 Mr. Dave Clausen 24

Line Style Patterns -

The names of the line patterns are:

4/26/2011

SOLID LINE =
DOTTED LINE =
CENTER_LINE
DASHED LINE =

I
W N = O

Mr. Dave Clausen 25

Filling Patterns

*Selecting Pattern and Color
*Filling Regions
*Getting a Pixel

4/26/2011 Mr. Dave Clausen

26

Selecting Pattern

and Color
p—

Use the command SetF1llStyle for setting the W
pattern and color for the object that you wish

to fill.

settillstyle (pattern, color); —

4/26/2011 Mr. Dave Clausen 27

Pattern Names -
Here are the name of available patterns: o

Values Causing filling with
EMPTY |FILL Background Color -
SOLID FILL Solid Color
LINE FILL Horizontal Lines —
LTSLASH FILL Thin diagonal lines
SLASH FILL Thick diagonal lines

BKSLASH FILL Thick diagonal backslashes
LTBKSLASH FILL Light backslashes

HATCH |FILL Thin cross hatching

XHATCH FILL. | Thick cross hatching -
INTERLEAVE FILL Interleaving lines

WIDE DOT _FILL — Widely spaced dots

CLLOSE _DOT_FILL Closely spaced dots

4/26/2011 Mr. Dave Clausen 28

Filling Regions —

After selecting a color and pattern,
floodfill 1s used to fill the desired area.

floodfill (x, y, border color);

This “paints out” the desired color until 1t
reaches border color.

Note: The border color must be the same
color as the color used to draw the shape.

Also, you can only fill completely
“closed” shapes.

Program10 4.cpp

4/26/2011 Mr. Dave Clausen

24

Filling “Special” Regions -

To draw a filled ellipse:

fillellipse (xcoordinate, ycoordinate, xradius, yradius); -
To draw a filled rectangle:

bar (x1,y1, x2, y2);
To draw a filled 3D rectangle:

bar3d(x1, y1, x2, y2, depth, topflag); //depth is width of
the 3D rectangle, if topflag 1s non-0 a top 1s added to the bar

To draw a filled section of a circle:
pieslice (X, y, startangle, endangle, xradius);

4/26/2011 Mr. Dave Clausen 30

—
Text Output on the Graphics Screqms

To write a literal expression on the
graphics screen using the location
specified by (x, y) use the command: -

outtextxy (x, y, “literal expression™);

outtextxy (x, y, string variable.c str());
Note: string variable represents a “C-style” string.

When using an apstring variable use the ¢ str()
member function to convert the string.

4/26/2011 Mr. Dave Clausen 31

Converting Int to apstring -

—
The Marine Biology Case Study includes a
function 1n the “utils” class to convert an 8
integer to apstring.

This function can be found in the “Part 2”
folder.

The filename 1s:

utils.cpp

4/26/2011 Mr. Dave Clausen 32

—
Text Styles -

To set the values for the text characteristicsuse:

settextstyle (font, direction, charsize); —
Font Direction

DEFAULT FONT HORIZ DIR = Left to right p—
TRIPLEX FONT VERT DIR = Bottom to top

SMALL FONT

SANS SERIF FONT Fonts continued

GOTHIC FONT COMPLEX FONT .
SCRIPT _FONT EUROPEAN FONT

SIMPLEX FONT BOLD FONT

TRIPLEX SCR_FONT

4/26/2011 Mr. Dave Clausen 33

4/26/2011

Text Styles
Font Sizes

CharSize

=]
2]

Default (normal)
Double Size

3="

‘riple Size

4 =4 Times the normal
5 =5 Times the normal

10 =

10 Times the normal

Mr. Dave Clausen

Text Justification —

To set the way that text is located
around the point specified use the command: -
settextjustify (horizontal,vertical); —

Horizontal Vertical

LEFT TEXT TOP TEXT

CENTER TEXT BOTTOM TEXT

RIGHT TEXT

Program10 2.cpp

4/26/2011 Mr. Dave Clausen 35

Clearing the Screen —

There are two ways to clear the screen. —
When 1n graphics mode use:

cleardevice(); //#include <graphics.h>

When not in graphics mode use:
clrser(); //#include <conio.h> —

« This only clears the text screen, not a graphics
screen.

4/26/2011 Mr. Dave Clausen 36

Text
Height & Width

—
Returns the height, in pixels, of string S 1f 1t

were to be written on the graphics screen g
using the current defaults.

textheight (S string);

Returns the width, in pixels, of string S 1f it
were to be written on the graphics screen o
using the current defaults.

textwidth (S string);

4/26/2011 Mr. Dave Clausen 37

Getting a Pixel

-
To return the color number corresponding to

the color located at the point: X, Y use the 9
command:

getpixel (x, y);

4/26/2011 Mr. Dave Clausen 38

—
Useful Non Graphic Command8$®

kbhit() —

 checks to see if a keystroke is currently
available —

 If a keystroke 1s available, returns a nonzero
integer.

 If a keystroke 1s not available, returns a zero.

Any available keystrokes can be retrieved -

with getch().
* Both kbhit() and getch() belong to <conio.h>

4/26/2011 Mr. Dave Clausen 39

—
Using Borland C++5.02 pm

Create a project with the following settings:

New Target

Project Path and Mare:

R W 0K
+4%9999F1Gl.ide

Cancel
Target Name: x -

5999F1 Gl %5. Browse

&% Advanced

Framewarks;

v Class Library

kath Suppart;

% Floating Point
" Emulation

" Mone

Libraries: I -

[Mo Exceptions

[~ Alternate Startup [Diagnostic

'Térget Expert

4/26/2011 Mr. Dave Clausen 40)

	Borland_Graphics_05-06_Page_01
	Borland_Graphics_05-06_Page_02
	Borland_Graphics_05-06_Page_03
	Borland_Graphics_05-06_Page_04
	Borland_Graphics_05-06_Page_05
	Borland_Graphics_05-06_Page_06
	Borland_Graphics_05-06_Page_07
	Borland_Graphics_05-06_Page_08
	Borland_Graphics_05-06_Page_09
	Borland_Graphics_05-06_Page_10
	Borland_Graphics_05-06_Page_11
	Borland_Graphics_05-06_Page_12
	Borland_Graphics_05-06_Page_13
	Borland_Graphics_05-06_Page_14
	Borland_Graphics_05-06_Page_15
	Borland_Graphics_05-06_Page_16
	Borland_Graphics_05-06_Page_17
	Borland_Graphics_05-06_Page_18
	Borland_Graphics_05-06_Page_19
	Borland_Graphics_05-06_Page_20
	Borland_Graphics_05-06_Page_21
	Borland_Graphics_05-06_Page_22
	Borland_Graphics_05-06_Page_23
	Borland_Graphics_05-06_Page_24
	Borland_Graphics_05-06_Page_25
	Borland_Graphics_05-06_Page_26
	Borland_Graphics_05-06_Page_27
	Borland_Graphics_05-06_Page_28
	Borland_Graphics_05-06_Page_29
	Borland_Graphics_05-06_Page_30
	Borland_Graphics_05-06_Page_31
	Borland_Graphics_05-06_Page_32
	Borland_Graphics_05-06_Page_33
	Borland_Graphics_05-06_Page_34
	Borland_Graphics_05-06_Page_35
	Borland_Graphics_05-06_Page_36
	Borland_Graphics_05-06_Page_37
	Borland_Graphics_05-06_Page_38
	Borland_Graphics_05-06_Page_39
	Borland_Graphics_05-06_Page_40

