|ntroduction to Computer
Programming

Mr. Dave Clausen
L a Canada High School

Computer Pregrems

o Software refers to programs. that make the |
computer perform some task. - ‘

« -A program is a set of instructions that tells '.
the computer what to do. -

« \WWhen you have written a program the
computer will behave exactly as you have
instructed it. It will do no more or no less
than what is contained in your specific

InStFUCtIOHS .
: £ = |
- Mr. Dave Clausen ‘i

Writing Programs
. Learning to wrﬂite programs ﬁre'qnires two skiils; '-

-~ You need to use specific termlnology and punctuatlon '
that can be understood by the-machine; that is, you need
to learn a programmlng Ianguage i

— You need to-develop a plan for selving a particular |
problem. This plan—or algorithm-is a sequence of steps
that, when followed, will lead toa solution of the

problem.
" Mr. Dave.CIausen tF

Solving Problems

+ Initially, you may think that:learning a language is
the more difficult task because your problems will-
have relatively easy solutions. Nothlng could be-
further from the truth!

» The single most important thlng you can do as
a student of computer science Is to develop the
skill to solve problems.

. Once you have this skill, you can learn to write

programs in several different languages. %m

Mr. Dave Clausen) 4

What Is a Computer Language?-

A microprocesSor is designed to-“understand” a
set of commands.called an “instruction set” -

All instructions must be prowded to the CPU in |ts.
native Ianguage called machine language.

All data transmission, manipulation, storage, and
retrieval is done by the machine Using electrical
pulses representing sequences of binary digits.

IT eight-digit binary codes are used, there are 256
numbered mstructlons from OOOOOOOO to

11111111, | £ i
- L Dave.CIausen ' : 5

Machine Language

Instructions for adding two numbers would consist
'of a sequence of these eight-digit codes from - = -
00000000 to-11111111. . - . ° €
Instructions written in this form are referred to as
machine language. ' -

It is the native language that the CPU “speaks
and “understands”.

It Is possible to write an entire program In
machine language: However, this Is very time
consuming and difficult to read and understand.

Mr. Dave Clausen 6

Programming Languages

Fortunately, special languages have been
developed- that.are more easily understood (than
‘machine language). | :

‘These special Ianguages are called programmmg :
languages. .
These Ianguages prowde a way to erte computer

programs that are: understood by both computers
and people. :

Programming Ianguages have thelr own
vocabulary and rules of usage.

Some languages are very technlcal while others
are similar to English.

Mr. Dave Clausen

Assembly Language

The programming language-that-1s most like- -
‘machine language is assembly.language. * -
Assembly language uses letters and numbersto -
represent machlne language instructions.

An assembler is a program that reads the codes the
programmer writes in assembly language and

“assembles” a machine language program based
on those codes.

However, assembly Ianguage Is still difficult to
read

Mr. Dave Clausen 8

Comparing Machine Language &
Assembly Language

» For example, the machine code for addmg
two integers mlght be:

O10000110011101000111101010000010010101101000010

» While the assembly Ianguage code mlght
be: .
LOAD A
ADD B

STORE C

_ This causes the number in A to be added to the number in B, and
~ the result is stored for later use in C. %

Mr. Dave Clausen 9

Low Level Languages

« Machine Language and Assembly Language are
both called low-level languages. -

* In a low-level Ianguage it is necessary for the
programmer to know the instruction set of the -
CPU in order to program the computer.

« Each instruction in a low-level-language
corresponds to one or only a. few microprocessor

mstructlons

Mr. Dave Clausen

10

High Level L‘anguages 5 ‘.

* A high-level Ianguage IS any programmlng
language that uses words and symbols to make |t
relatively easy to- read and wrlte acomputer - ° -
program. Al :

» In a high-level _Ianguage, ins'tructiolns do not -
necessarily correspond one-to-one with the
instruction set of the CPU.

e One command in a high-level language may
correspond to many microprocessor instructions.

Mr. Dave Clausen JE |

High Level Languages 2. ‘.

+ Many high-level languages have been - . -

developed. These include: '
+ FORTRAN, COBOL, BASIC Logo, -

Pascal, C; C++, Java, Python, and others. -

- These languages simplify even further the
terminology and symbolism necessary for
directing the machine to perform various
manipulations of data.

Mr. Dave Clausen

12

Advantages Of
High Level Languages

. H|gh Level Languages

- — Reduce the -nu'mber of instruciio’nslthat must be written.

~— Allow programs to be written‘in.a shorter amount of
~ time than'a low-level language would take.

— Reduce the number of errors that are made, because. ..
« The instructions are easier to read. -

— Are more portable (the programs are easier to move
among computers with different microprocessors).

Mr. Dave Clausen 3

Advantages Of
Low Level Languages
» Low Level Languages: - . -

_— Instructions can be written to énable the - j
computer to-do anything that the hardware will

~ follow. ‘e _ & ~

— Require-less mémory

— Run more quickly

Mr. Dave Clausen

14

High Level Langu’agé iExampIe‘si

» Consider the followmg programs that add two numbers

together:

BASIC Pascal - ° C++ - .. - LOGO

10'_I =3 program -Addlt;.. int main('-) - toadd:l:J:K

20J=2 vl W L& { . % MAKE“I:3

0K=1+J 1i,j,k: integer;i inti, J, K; 3 MAKE 2 g

| begin - , | = 3; - MAKE“K:I+:

i:=3; : jE28 & end
=@: ' k=i+j: .
K:=1+]j; . return O;'

end. : }

Mr. Dave Clausen : 15

High Level Language Examples 2

Java . - Python -
public class AddTwoNumbers{ . S 3
public static void main(String[] args){ .) =2
inti, j, k; ' : k ,+J
=8 :
i2.2
K=i+j;
by
¥

Mr. Dave Clausen : 16

Interpreters and Compllers

Programmers ertlng In a hlgh IeveI Ianguage enter
'.the program’s instructions 1nto a text editor.

The files saved |n this format are called text flles

A program written in a high- IeveI language Is called
source code. oy

The programs are: translated mto machine Ianguage
by interpreters or compilers. -

The resulting: machine Ianguag_e code is known as
object code (or byte code - Java).

Mr. Dave Clausen 17

' Ihterpre‘ters 2

An interpreter is a program that translates the
source code of a high-level Ianguage Into machme
language.

Each instruction iS Interpreted from the ,
programming Ianguage as needed ULE by Ilne of
code). - -

Every time the program is run, the interpreter must
translate each instruction again.

In order to “run” the program, the interpreter
must be loaded into the computer’s memory.

Mr. Dave Clausen 18

-Compilers - |
« A compiler is another program that translatese %
high-level language into machine language. -
» A compiler makes the translation once so that the -
source code don’t have to be translated each tlme |
the program Is run. -

— The source code IS translated |nto a f|Ie called an object
~ Aile. -

— A program called a linker is used to Create an
executable program.

— Most modern compilers let you compile and link in a
single operation, and have an “IDE” (Integrated
Development Environment) to enter text, debug,
compile, link, and.run programs. -

Mr. Dave Clausen 19

Debug

« Bug: An error in coding or logic that causes.a:

program to malfunctlon or to produce mcorrect :

results.

. Debug: To detect, locate, and correct logical of «:

syntactical errors-in a program.

to a problem in one of the first-electronic
computers that was traced to-a moth caught
between the contacts of a relay. in the machine.

-~
,5

7‘

. /4‘\\\

Mr. Dave Clausen

9

« Folklore attributes the first use of the terim “bug .

20

Programmmg Languages
First Generation

» Generation 1.— Late 1940s t0 Early 19503:': '.

I\/Iachme Languages

— Programmers entered programs-and data - -
~directly into RAM using 1sand 0s '
— Several disadvantages existed:

« Coding was error prone, tedious, and slow
- Modifying programs was extremely difficult |

» |t was nearly impossible for a person to decipher
someone else’s program

 Programs were. not portable

Mr. Dave Clausen

21

Programming Languages:

Second Generation

» Generation 2 — Early 1950s to Present
Assembly Languages ' |

— Uses mnemonic symbols to represent
Instructions and data

— Assembly language is: S _
 More programmer friendly:-than machine Iangl_Jage
+ Tedious to use and difficult to modify

- Since each type of computer has its own unique
assembly language, it is not portable

Mr. Dave Clausen

22

Programmmg Languages
Third Generation

« Generation 3 — Mid-1950s to Present ngh—
Level Languages.

- — Designed to be human frlendly easy to read, wrlte -
and understand - -

— Each instruction corresponds to many instructions in -
machine language -

-— Translation to machine language occurs through a
program called an interpreter or compiler.

— Examples: FORTRAN, COBOL;, BASIC, LOGO, C,
Pascal, C++, Java; and Python.

Mr. Dave Clausen 23

Basia ApproaChés of
Program m-ing

« High-level programmmg Ianguages utrlrze '.
two dlfferent approaches 2, ;

— Procedural approach

. Examples ‘COBOL, FORTRAN, BASIC Pascal C
C++, LOGO, and Python. .

— Object-Oriented Programming approach
» Examples: ‘Smalltalk, C++, Java, and Python

Mr. Dave Clausen 24

What Is a Program?

* Program , .
-~ Alist of instructions Written in a special c.od,e,'- f
or language. e 3 v
— The program tells the computér'which i
operations to perform, - . © ‘(M
— and in what sequence to pérform them. g
_ Garbage In, Garbage Out (G.1.G.O.) @ﬁw

— Get what you asked for, not hecessarily what
~you want. : %

Mr. Dave Clausen 25

» To Develop Problem Solvmg Skllls

— It Is very important to develop problem
solving skills. Programmlng Is all about

Why Programmmg? o w
}
solving problems

2!
— Requires creativity and carefu1 thought

_ Analyze the problem and break it down into
manageable parts (modules, procedures
_ functions)

o It’s also rewarding!

Mr. Dave Clausen) 26

Program Development -

+ Planning is actitical issue. - -
- — Don’t type 1n code ‘off the ‘top of your
head” -

. Programmmg Takes Tlme
— Plan on ertlng several reV|S|ons \
— Debugging your program’ -

» Programming requires precision

— One misplaced semi-colon (or colon -
- Python) will stap the program

Mr. Dave Clausen

3

=)

27

Exercise in Frustration =

Plan well (using paper and pencil)
Startearly - - y®
Be patient: = B
Handle Frustration ‘

Work Hard

Don’t let someone else do part'.of the program for
you. |

Understand the Concepts Yourself!
Solve the problem yourself! -

Mr. Dave Clausen 28

- Step1
Good Programmmg Hablts

. 1 Analysis - -
— Is the computer the approprlate tool for solvmg
this problem?

— Would the problem be better solved Wlth
human interaction or paper and pencil?

— Sometimes human judgment is preferable.

E 33 '_ ¥ a

L

- Step 2

Good Programmlng Hablts

. 2 Specification of the Problem

— Formulate a clear and precise statement of What
Is to be done (elear and unambiguous). :

"— Knhow w
— Knhow w
— Know w

nat data are avallable
nat may be assumed .

nat output is de3|red & the form it -

~ should take
— Divide the problem into sub_problems
— Doesn’t discuss “how to” solve the problem

-~ yet.

Mr. Dave Clausen 30

- Step 3

Good Programmlng Hablts

3 Develop an Algorlthm
_— Algorithm:

- a finite sequence of effective statements that when applled to '_

the problem, will solve it.

- — Effective.Statement:
 aclear unamblguous mstructlon that can be carried out

— Algorithms should have:

« specific beginning and ending that i_s reached in a reasonable
amount of time (a finite amount of time).

— This iIs done before sitting down at the computer.

Mr. Dave Clausen

31

‘Step 3.5

Good Programmrng Hablts': $

* 3.5 Document the Program

- — Programming Style
» Upper / Lower Case, Indentrng format

—Comments s

— Descriptive Identifier Names .
- Variables, Coristants, Procedures, Functions

— Pre & Post Conditions
» For each Procedure and Function

— Output

Mr. Dave Clausen

32

- Step 4
Good Programmmg Hablts

. 4 Code the Program
-~ After algorithms are correct
"— Desk check your program

 Without the computer,
just paper and pencil

. 4 1 Type and Run the Program

— Look for errors
» Syntax Errors (semi colon missing, etc.)
« Logic Errors (divide by zero, etc.)

Mr. Dave Clausen : , 33

‘Step 4.2

Good Programmlng Hablts

* 4.2 Test the Results .
- — Does it produce the corre.ct'.selu;tion?
"— Check results with paper and pencil.
-— Does it work for all cases? . -
~« Border, Edge, Extreme Cases . -
— Revise the program if not-correct.

— The coding process is not completed until the
- program has been tested thoroughly and works
. properly (recheck the specifications).

Mr. Dave Clausen 34

- Step 5
Good Programmlng Hablts

2. Interpretatlon
. — The program may execute Wlthout any obwous

errors. .
— It may not produce the results which solve the
problem. 4

¢ G.1.G.O ‘Get what you askfor @
not what you want. 3M)

» Recheck your program with the original
specifications .

Mr. Dave Clausen ; 35

Top Down "Des’ign

Subdivide the problem into major tasks

- — Subdivide each major task lnto smaller tasks o

» Keep subdividing until each task IS easily solved. |

Each subdivision Is called stepW|se
refinement. -

Each task is called a module

We can use a structure chart to show
relationships between modules.

Mr. Dave Clausen

36

Top Down Design 2

Structure Chart

Main Task

I—I—I—\

Sub task Sub task Sub task

Mr. Dave Clausen) 37

Top Down Design 3
+ Pseudocode - Lo ||
~— is written in'Er'Jinsh with programming

language like sentence structure and -
Indentations: L

— Major Tasks are numbered v‘vifh whole numbers
— Subtasks use decimal points-for outline.

Mr. Dave Clausen 38

Top Down De_s'ign 4

. GEt tarting balance
e 't transaction type

get transaction amount
'Br t- tin computations
2. 1. It deposit then
add to balance
Else
subtract from balance
Dizplay the results
A 1. Display starting balance
3.2, Diaplay transaction
2.2. 1. Display transaction type
522 Display transaction atnount
5.5 Display ending balance

Mr. Dave Clausen 39

Writing Programs

« Vocabulary - -
- — reserved words
» have a predefined meaning that can’t be changed

— library identifiers
e Wwords defmed In standard Ilbrarles

il programmer supplled identifiers

« defined by the.programmer followmg a well deflned
set of rules

Mr. Dave Clausen 40

Writing Programs 2

. Words are CaSe SeNsItIvE

. — For constants use ALL CAPS (UPPERCASE)

— For reserved words and |dent|f|ers use
lowercase:
. 'Syntax .
_ rules for construction of valld statements,
Including

 order of words
e punctuation

Mr. Dave Clausen

41

‘Writing Code

+ Executable Statement

- — basic unit of grammar

+ library identifiers, programmer defined |dent|f|ers
reserved.words, numbers and/or characters

— A semicolon terminates a statement In many
~ programming languages ~ -

. Programs should be readable

noformat.cpp : format.cpp

Mr. Dave Clausen

42

noformat.cpp
format.cpp

The Use of Comments .‘

« Comments should be mcluded to help make
the program mere clear to someone readmg
the code other than the author :

« Use comments after the header to explam ;
the function of the program & througheut
the program

Mr. Dave Clausen 43

'Teist Prog’ramts

Test programs are short programs written to
provide an answer to a specrfrc questron

You can try something out
Practice the programmrng Ianguage |
Ask “what 1f” questions = - ,;_l!ll .\ |

LNy

Experiment: try and see - -

Mr. Dave Clausen - 44

