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Computer Pregrems

o Software refers to programs. that make the |
computer perform some task. - ‘

« -A program is a set of instructions that tells '.
the computer what to do. -

« \WWhen you have written a program the
computer will behave exactly as you have
instructed it. It will do no more or no less
than what is contained in your specific
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Writing Programs
. Learning to wrﬂite programs ﬁre'qnires two skiils; '-

-~ You need to use specific termlnology and punctuatlon '
that can be understood by the-machine; that is, you need
to learn a programmlng Ianguage i

— You need to-develop a plan for selving a particular |
problem. This plan—or algorithm-is a sequence of steps
that, when followed, will lead toa solution of the

problem.
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Solving Problems

+ Initially, you may think that:learning a language is
the more difficult task because your problems will-
have relatively easy solutions. Nothlng could be-
further from the truth!

» The single most important thlng you can do as
a student of computer science Is to develop the
skill to solve problems.

. Once you have this skill, you can learn to write

programs in several different languages. %m
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What Is a Computer Language?-

A microprocesSor is designed to-“understand” a
set of commands.called an “instruction set” -

All instructions must be prowded to the CPU in |ts.
native Ianguage called machine language.

All data transmission, manipulation, storage, and
retrieval is done by the machine Using electrical
pulses representing sequences of binary digits.

IT eight-digit binary codes are used, there are 256
numbered mstructlons from OOOOOOOO to

11111111, | £ i
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Machine Language

Instructions for adding two numbers would consist
'of a sequence of these eight-digit codes from - = -
00000000 to-11111111. . - . ° €
Instructions written in this form are referred to as
machine language. ' -

It is the native language that the CPU “speaks
and “understands”.

It Is possible to write an entire program In
machine language: However, this Is very time
consuming and difficult to read and understand.
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Programming Languages

Fortunately, special languages have been
developed- that.are more easily understood (than
‘machine language). | :

‘These special Ianguages are called programmmg :
languages. .
These Ianguages prowde a way to erte computer

programs that are: understood by both computers
and people. :

Programming Ianguages have thelr own
vocabulary and rules of usage.

Some languages are very technlcal while others
are similar to English.
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Assembly Language

The programming language-that-1s most like- -
‘machine language is assembly.language.  * -
Assembly language uses letters and numbersto -
represent machlne language instructions.

An assembler is a program that reads the codes the
programmer writes in assembly language and

“assembles” a machine language program based
on those codes.

However, assembly Ianguage Is still difficult to
read
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Comparing Machine Language &
Assembly Language

» For example, the machine code for addmg
two integers mlght be:

O10000110011101000111101010000010010101101000010

» While the assembly Ianguage code mlght
be: .
LOAD A
ADD B

STORE C

_ This causes the number in A to be added to the number in B, and
~ the result is stored for later use in C. %
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Low Level Languages

« Machine Language and Assembly Language are
both called low-level languages. -

* In a low-level Ianguage it is necessary for the
programmer to know the instruction set of the -
CPU in order to program the computer.

« Each instruction in a low-level-language
corresponds to one or only a. few microprocessor

mstructlons

Mr. Dave Clausen
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High Level L‘anguages 5 ‘.

* A high-level Ianguage IS any programmlng
language that uses words and symbols to make |t
relatively easy to- read and wrlte acomputer - ° -
program. Al :

» In a high-level _Ianguage, ins'tructiolns do not -
necessarily correspond one-to-one with the
instruction set of the CPU.

e One command in a high-level language may
correspond to many microprocessor instructions.
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High Level Languages 2. ‘.

+ Many high-level languages have been - . -

developed.  These include: '
+ FORTRAN, COBOL, BASIC Logo, -

Pascal, C; C++, Java, Python, and others. -

- These languages simplify even further the
terminology and symbolism necessary for
directing the machine to perform various
manipulations of data.

Mr. Dave Clausen
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Advantages Of
High Level Languages

. H|gh Level Languages

- — Reduce the -nu'mber of instruciio’nslthat must be written.

~— Allow programs to be written‘in.a shorter amount of
~ time than'a low-level language would take.

— Reduce the number of errors that are made, because. ..
« The instructions are easier to read. -

— Are more portable (the programs are easier to move
among computers with different microprocessors).
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Advantages Of
Low Level Languages
» Low Level Languages: - . -

_— Instructions can be written to énable the - j
computer to-do anything that the hardware will

~ follow. ‘e _ & ~

— Require-less mémory

— Run more quickly

Mr. Dave Clausen
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High Level Langu’agé iExampIe‘si

» Consider the followmg programs that add two numbers

together:

BASIC Pascal - ° C++ - .. - LOGO

10'_I =3 program -Addlt;.. int main('-) - toadd:l:J:K

20J=2 vl W L& { . % MAKE“I:3

0K=1+J 1i,j,k: integer;i inti, J, K; 3 MAKE 2 g

| begin - , | = 3; - MAKE“K:I+:

i:=3; : jE28 & end
=@: ' k=i+j: .
K:=1+]j; . return O;'

end. : }
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High Level Language Examples 2

Java . - Python -
public class AddTwoNumbers{ . S 3
public static void main(String[] args){ . ) =2
inti, j, k; ' : k ,+J
=8 :
i2.2
K=i+j;
by
¥
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Interpreters and Compllers

Programmers ertlng In a hlgh IeveI Ianguage enter
'.the program’s instructions 1nto a text editor.

The files saved |n this format are called text flles

A program written in a high- IeveI language Is called
source code. oy

The programs are: translated mto machine Ianguage
by interpreters or compilers. -

The resulting: machine Ianguag_e code is known as
object code (or byte code - Java).
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' Ihterpre‘ters 2

An interpreter is a program that translates the
source code of a high-level Ianguage Into machme
language.

Each instruction iS Interpreted from the ,
programming Ianguage as needed ULE by Ilne of
code). - -

Every time the program is run, the interpreter must
translate each instruction again.

In order to “run” the program, the interpreter
must be loaded into the computer’s memory.
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-Compilers - |
« A compiler is another program that translatese %
high-level language into machine language. -
» A compiler makes the translation once so that the -
source code don’t have to be translated each tlme |
the program Is run. -

— The source code IS translated |nto a f|Ie called an object
~ Aile. -

— A program called a linker is used to Create an
executable program.

— Most modern compilers let you compile and link in a
single operation, and have an “IDE” (Integrated
Development Environment) to enter text, debug,
compile, link, and.run programs. -
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Debug

« Bug: An error in coding or logic that causes.a:

program to malfunctlon or to produce mcorrect :

results.

. Debug: To detect, locate, and correct logical of «:

syntactical errors-in a program.

to a problem in one of the first-electronic
computers that was traced to-a moth caught
between the contacts of a relay. in the machine.

-~
,5

7‘

. /4‘\\\
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Programmmg Languages
First Generation

» Generation 1.— Late 1940s t0 Early 19503:': '.

I\/Iachme Languages

— Programmers entered programs-and data - -
~directly into RAM using 1sand 0s '
— Several disadvantages existed:

« Coding was error prone, tedious, and slow
- Modifying programs was extremely difficult |

» |t was nearly impossible for a person to decipher
someone else’s program

 Programs were. not portable

Mr. Dave Clausen
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Programming Languages:

Second Generation

» Generation 2 — Early 1950s to Present
Assembly Languages ' |

— Uses mnemonic symbols to represent
Instructions and data

— Assembly language is: S _
 More programmer friendly:-than machine Iangl_Jage
+ Tedious to use and difficult to modify

- Since each type of computer has its own unique
assembly language, it is not portable

Mr. Dave Clausen
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Programmmg Languages
Third Generation

« Generation 3 — Mid-1950s to Present ngh—
Level Languages.

- — Designed to be human frlendly easy to read, wrlte -
and understand - -

— Each instruction corresponds to many instructions in -
machine language -

-— Translation to machine language occurs through a
program called an interpreter or compiler.

— Examples: FORTRAN, COBOL;, BASIC, LOGO, C,
Pascal, C++, Java; and Python.
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Basia ApproaChés of
Program m-ing

« High-level programmmg Ianguages utrlrze '.
two dlfferent approaches 2, ;

— Procedural approach

. Examples ‘COBOL, FORTRAN, BASIC Pascal C
C++, LOGO, and Python. .

— Object-Oriented Programming approach
» Examples: ‘Smalltalk, C++, Java, and Python
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What Is a Program?

* Program , .
-~ Alist of instructions Written in a special c.od,e,'- f
or language. e 3 v
— The program tells the computér'which i
operations to perform, - . © ‘(M
— and in what sequence to pérform them. g
_ Garbage In, Garbage Out (G.1.G.O.) @ﬁw

— Get what you asked for, not hecessarily what
~you want. : %
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» To Develop Problem Solvmg Skllls

— It Is very important to develop problem
solving skills. Programmlng Is all about

Why Programmmg? o w
}
solving problems

2!
— Requires creativity and carefu1 thought

_ Analyze the problem and break it down into
manageable parts (modules, procedures
_ functions)

o It’s also rewarding!

Mr. Dave Clausen ) 26



Program Development -

+ Planning is actitical issue. - -
- — Don’t type 1n code ‘off the ‘top of your
head” -

. Programmmg Takes Tlme
— Plan on ertlng several reV|S|ons \
— Debugging your program’ -

» Programming requires precision

— One misplaced semi-colon (or colon -
- Python) will stap the program

Mr. Dave Clausen
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Exercise in Frustration =

Plan well (using paper and pencil)
Startearly - - y®
Be patient: = B
Handle Frustration ‘

Work Hard

Don’t let someone else do part'.of the program for
you. |

Understand the Concepts Yourself!
Solve the problem yourself! -

Mr. Dave Clausen 28



- Step1
Good Programmmg Hablts

. 1 Analysis - -
— Is the computer the approprlate tool for solvmg
this problem?

— Would the problem be better solved Wlth
human interaction or paper and pencil?

— Sometimes human judgment is preferable.

E 33 '_ ¥ a

L



- Step 2

Good Programmlng Hablts

. 2 Specification of the Problem

— Formulate a clear and precise statement of What
Is to be done (elear and unambiguous). :

"— Knhow w
— Knhow w
— Know w

nat data are avallable
nat may be assumed .

nat output is de3|red & the form it -

~ should take
— Divide the problem into sub_problems
— Doesn’t discuss “how to” solve the problem

-~ yet.
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- Step 3

Good Programmlng Hablts

3 Develop an Algorlthm
_— Algorithm:

- a finite sequence of effective statements that when applled to '_

the problem, will solve it.

- — Effective.Statement:
 aclear unamblguous mstructlon that can be carried out

— Algorithms should have:

« specific beginning and ending that i_s reached in a reasonable
amount of time (a finite amount of time).

— This iIs done before sitting down at the computer.

Mr. Dave Clausen
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‘Step 3.5

Good Programmrng Hablts': $

* 3.5 Document the Program

- — Programming Style
» Upper / Lower Case, Indentrng format

—Comments s

— Descriptive Identifier Names .
- Variables, Coristants, Procedures, Functions

— Pre & Post Conditions
» For each Procedure and Function

— Output

Mr. Dave Clausen

32



- Step 4
Good Programmmg Hablts

. 4 Code the Program
-~ After algorithms are correct
"— Desk check your program

 Without the computer,
just paper and pencil

. 4 1 Type and Run the Program

— Look for errors
» Syntax Errors (semi colon missing, etc.)
« Logic Errors (divide by zero, etc.)
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‘Step 4.2

Good Programmlng Hablts

* 4.2 Test the Results .
- — Does it produce the corre.ct'.selu;tion?
"— Check results with paper and pencil.
-— Does it work for all cases? . -
~« Border, Edge, Extreme Cases . -
— Revise the program if not-correct.

— The coding process is not completed until the
- program has been tested thoroughly and works
. properly (recheck the specifications).
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- Step 5
Good Programmlng Hablts

2. Interpretatlon
. — The program may execute Wlthout any obwous

errors. .
— It may not produce the results which solve the
problem. 4

¢ G.1.G.O ‘Get what you askfor @
not what you want. 3M)

» Recheck your program with the original
specifications .
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Top Down "Des’ign

Subdivide the problem into major tasks

- — Subdivide each major task lnto smaller tasks o

» Keep subdividing until each task IS easily solved. |

Each subdivision Is called stepW|se
refinement. -

Each task is called a module

We can use a structure chart to show
relationships between modules.

Mr. Dave Clausen
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Top Down Design 2

Structure Chart

Main Task

I—I—I—\

Sub task Sub task Sub task

Mr. Dave Clausen ) 37



Top Down Design 3
+ Pseudocode - Lo ||
~— is written in'Er'Jinsh with programming

language like sentence structure and -
Indentations: L

— Major Tasks are numbered v‘vifh whole numbers
— Subtasks use decimal points-for outline.
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Top Down De_s'ign 4

. GEt tarting balance
e 't transaction type

get transaction amount
'Br t- tin computations
2. 1. It deposit then
add to balance
Else
subtract from balance
Dizplay the results
A 1. Display starting balance
3.2, Diaplay transaction
2.2. 1. Display transaction type
522 Display transaction atnount
5.5 Display ending balance
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Writing Programs

« Vocabulary - -
- — reserved words
» have a predefined meaning that can’t be changed

— library identifiers
e Wwords defmed In standard Ilbrarles

il programmer supplled identifiers

« defined by the.programmer followmg a well deflned
set of rules

Mr. Dave Clausen 40



Writing Programs 2

. Words are CaSe SeNsItIvE

. — For constants use ALL CAPS (UPPERCASE)

— For reserved words and |dent|f|ers use
lowercase:
. 'Syntax .
_ rules for construction of valld statements,
Including

 order of words
e punctuation

Mr. Dave Clausen
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‘Writing Code

+ Executable Statement

- — basic unit of grammar

+ library identifiers, programmer defined |dent|f|ers
reserved.words, numbers and/or characters

— A semicolon terminates a statement In many
~ programming languages ~ -

. Programs should be readable

noformat.cpp : format.cpp

Mr. Dave Clausen
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noformat.cpp
format.cpp

The Use of Comments .‘

« Comments should be mcluded to help make
the program mere clear to someone readmg
the code other than the author :

« Use comments after the header to explam ;
the function of the program & througheut
the program
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'Teist Prog’ramts

Test programs are short programs written to
provide an answer to a specrfrc questron

You can try something out
Practice the programmrng Ianguage |
Ask “what 1f” questions = - ,;_l!ll .\ |

LNy

Experiment: try and see - -
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