
Introduction to Computer

Programming

Mr. Dave Clausen

La Cañada High School

Mr. Dave Clausen 2

Computer Programs

• Software refers to programs that make the
computer perform some task.

• A program is a set of instructions that tells
the computer what to do.

• When you have written a program, the
computer will behave exactly as you have
instructed it. It will do no more or no less
than what is contained in your specific
instructions.

Mr. Dave Clausen 3

Writing Programs

• Learning to write programs requires two skills.

– You need to use specific terminology and punctuation

that can be understood by the machine; that is, you need

to learn a programming language.

– You need to develop a plan for solving a particular

problem. This planor algorithmis a sequence of steps

that, when followed, will lead to a solution of the

problem.

Mr. Dave Clausen 4

Solving Problems

• Initially, you may think that learning a language is

the more difficult task because your problems will

have relatively easy solutions. Nothing could be

further from the truth!

• The single most important thing you can do as

a student of computer science is to develop the

skill to solve problems.

• Once you have this skill, you can learn to write

programs in several different languages.

Mr. Dave Clausen 5

What Is a Computer Language?

• A microprocessor is designed to “understand” a

set of commands called an “instruction set”

• All instructions must be provided to the CPU in its

native language, called machine language.

• All data transmission, manipulation, storage, and

retrieval is done by the machine using electrical

pulses representing sequences of binary digits.

• If eight-digit binary codes are used, there are 256

numbered instructions from 00000000 to

11111111.

Mr. Dave Clausen 6

Machine Language

• Instructions for adding two numbers would consist

of a sequence of these eight-digit codes from

00000000 to 11111111.

• Instructions written in this form are referred to as

machine language.

• It is the native language that the CPU “speaks”

and “understands”.

• It is possible to write an entire program in

machine language. However, this is very time

consuming and difficult to read and understand.

Mr. Dave Clausen 7

Programming Languages
• Fortunately, special languages have been

developed that are more easily understood (than
machine language).

• These special languages are called programming
languages.

• These languages provide a way to write computer
programs that are understood by both computers
and people.

• Programming languages have their own
vocabulary and rules of usage.

• Some languages are very technical, while others
are similar to English.

Mr. Dave Clausen 8

Assembly Language

• The programming language that is most like

machine language is assembly language.

• Assembly language uses letters and numbers to

represent machine language instructions.

• An assembler is a program that reads the codes the

programmer writes in assembly language and

“assembles” a machine language program based

on those codes.

• However, assembly language is still difficult to

read.

Mr. Dave Clausen 9

Comparing Machine Language &

Assembly Language
• For example, the machine code for adding

two integers might be:

010000110011101000111101010000010010101101000010

• While the assembly language code might
be:
LOAD A

ADD B

STORE C

– This causes the number in A to be added to the number in B, and
the result is stored for later use in C.

Mr. Dave Clausen 10

Low Level Languages

• Machine Language and Assembly Language are

both called low-level languages.

• In a low-level language, it is necessary for the

programmer to know the instruction set of the

CPU in order to program the computer.

• Each instruction in a low-level language

corresponds to one or only a few microprocessor

instructions.

Mr. Dave Clausen 11

High Level Languages

• A high-level language is any programming

language that uses words and symbols to make it

relatively easy to read and write a computer

program.

• In a high-level language, instructions do not

necessarily correspond one-to-one with the

instruction set of the CPU.

• One command in a high-level language may

correspond to many microprocessor instructions.

Mr. Dave Clausen 12

High Level Languages 2

• Many high-level languages have been

developed. These include:

• FORTRAN, COBOL, BASIC, Logo,

Pascal, C, C++, Java, Python, and others.

• These languages simplify even further the

terminology and symbolism necessary for

directing the machine to perform various

manipulations of data.

Mr. Dave Clausen 13

Advantages Of

High Level Languages
• High Level Languages:

– Reduce the number of instructions that must be written.

– Allow programs to be written in a shorter amount of

time than a low-level language would take.

– Reduce the number of errors that are made, because…

• The instructions are easier to read.

– Are more portable (the programs are easier to move

among computers with different microprocessors).

Mr. Dave Clausen 14

Advantages Of

Low Level Languages
• Low Level Languages:

– Instructions can be written to enable the

computer to do anything that the hardware will

follow.

– Require less memory

– Run more quickly

Mr. Dave Clausen 15

High Level Language Examples
• Consider the following programs that add two numbers

together:

BASIC

10 I = 3

20 J = 2

30 K = I + J

Pascal

program AddIt;

var

i, j, k : integer;

begin

i := 3;

j := 2;

k := i + j;

end.

C++

int main()

{

int i, j, k;

i = 3;

j = 2;

k = i + j;

return 0;

}

LOGO

to add :I :J :K

MAKE “I :3

MAKE “J :2

MAKE “K :I + :J

end

Mr. Dave Clausen 16

High Level Language Examples 2
Java

public class AddTwoNumbers{

public static void main(String[] args){

int i, j, k;

i = 3;

j = 2;

k = i + j;

}

}

Python

i = 3

j = 2

k = i + j

Mr. Dave Clausen 17

Interpreters and Compilers

• Programmers writing in a high-level language enter

the program’s instructions into a text editor.

• The files saved in this format are called text files.

• A program written in a high-level language is called

source code.

• The programs are translated into machine language

by interpreters or compilers.

• The resulting machine language code is known as

object code (or byte code - Java).

Mr. Dave Clausen 18

Interpreters

• An interpreter is a program that translates the

source code of a high-level language into machine

language.

• Each instruction is interpreted from the

programming language as needed (line by line of

code).

• Every time the program is run, the interpreter must

translate each instruction again.

• In order to “run” the program, the interpreter

must be loaded into the computer’s memory.

Mr. Dave Clausen 19

Compilers
• A compiler is another program that translates a

high-level language into machine language.

• A compiler makes the translation once so that the
source code don’t have to be translated each time
the program is run.

– The source code is translated into a file called an object
file.

– A program called a linker is used to create an
executable program.

– Most modern compilers let you compile and link in a
single operation, and have an “IDE” (Integrated
Development Environment) to enter text, debug,
compile, link, and run programs.

Mr. Dave Clausen 20

Debug
• Bug: An error in coding or logic that causes a

program to malfunction or to produce incorrect
results.

• Debug: To detect, locate, and correct logical or
syntactical errors in a program.

• Folklore attributes the first use of the term “bug”
to a problem in one of the first electronic
computers that was traced to a moth caught
between the contacts of a relay in the machine.

Mr. Dave Clausen 21

Programming Languages:

First Generation

• Generation 1 – Late 1940s to Early 1950s:

Machine Languages

– Programmers entered programs and data

directly into RAM using 1s and 0s

– Several disadvantages existed:

• Coding was error prone, tedious, and slow

• Modifying programs was extremely difficult

• It was nearly impossible for a person to decipher

someone else’s program

• Programs were not portable

Mr. Dave Clausen 22

Programming Languages:

Second Generation

• Generation 2 – Early 1950s to Present:

Assembly Languages

– Uses mnemonic symbols to represent

instructions and data

– Assembly language is:

• More programmer friendly than machine language

• Tedious to use and difficult to modify

• Since each type of computer has its own unique

assembly language, it is not portable

Mr. Dave Clausen 23

Programming Languages:

Third Generation

• Generation 3 – Mid-1950s to Present: High-

Level Languages

– Designed to be human friendly – easy to read, write,

and understand

– Each instruction corresponds to many instructions in

machine language

– Translation to machine language occurs through a

program called an interpreter or compiler.

– Examples: FORTRAN, COBOL, BASIC, LOGO, C,

Pascal, C++, Java, and Python.

Mr. Dave Clausen 24

Basic Approaches of

Programming

• High-level programming languages utilize

two different approaches

– Procedural approach

• Examples: COBOL, FORTRAN, BASIC, Pascal, C,

C++, LOGO, and Python.

– Object-Oriented Programming approach

• Examples: Smalltalk, C++, Java, and Python

Mr. Dave Clausen 25

What Is a Program?

• Program

– A list of instructions written in a special code,

or language.

– The program tells the computer which

operations to perform,

– and in what sequence to perform them.

– Garbage In, Garbage Out (G.I.G.O.)

– Get what you asked for, not necessarily what

you want.

Mr. Dave Clausen 26

Why Programming?

• To Develop Problem Solving Skills

– It is very important to develop problem

solving skills. Programming is all about

solving problems.

– Requires creativity and careful thought.

– Analyze the problem and break it down into

manageable parts (modules, procedures,

functions)

• It’s also rewarding!

Mr. Dave Clausen 27

Program Development

• Planning is a critical issue

– Don’t type in code “off the top of your

head”

• Programming Takes Time

– Plan on writing several revisions

– Debugging your program

• Programming requires precision

– One misplaced semi-colon (or colon -

Python) will stop the program

Mr. Dave Clausen 28

Exercise in Frustration

• Plan well (using paper and pencil)

• Start early

• Be patient

• Handle Frustration

• Work Hard

• Don’t let someone else do part of the program for

you.

• Understand the Concepts Yourself!

• Solve the problem yourself!

Mr. Dave Clausen 29

Step 1

Good Programming Habits
• 1. Analysis

– Is the computer the appropriate tool for solving

this problem?

– Would the problem be better solved with

human interaction or paper and pencil?

– Sometimes human judgment is preferable.

Mr. Dave Clausen 30

Step 2

Good Programming Habits
• 2. Specification of the Problem

– Formulate a clear and precise statement of what
is to be done (clear and unambiguous).

– Know what data are available

– Know what may be assumed

– Know what output is desired & the form it
should take

– Divide the problem into sub problems

– Doesn’t discuss “how to” solve the problem
yet.

Mr. Dave Clausen 31

Step 3

Good Programming Habits
• 3. Develop an Algorithm

– Algorithm:

• a finite sequence of effective statements that when applied to

the problem, will solve it.

– Effective Statement:

• a clear unambiguous instruction that can be carried out.

– Algorithms should have:

• specific beginning and ending that is reached in a reasonable

amount of time (a finite amount of time).

– This is done before sitting down at the computer.

Mr. Dave Clausen 32

Step 3.5

Good Programming Habits
• 3.5 Document the Program

– Programming Style

• Upper / Lower Case, Indenting, format

– Comments

– Descriptive Identifier Names

• Variables, Constants, Procedures, Functions

– Pre & Post Conditions

• For each Procedure and Function

– Output

Mr. Dave Clausen 33

Step 4

Good Programming Habits
• 4. Code the Program

– After algorithms are correct

– Desk check your program

• Without the computer,

just paper and pencil

• 4.1 Type and Run the Program

– Look for errors

• Syntax Errors (semi colon missing, etc.)

• Logic Errors (divide by zero, etc.)

Mr. Dave Clausen 34

Step 4.2

Good Programming Habits
• 4.2 Test the Results

– Does it produce the correct solution?

– Check results with paper and pencil.

– Does it work for all cases?

• Border, Edge, Extreme Cases

– Revise the program if not correct.

– The coding process is not completed until the

program has been tested thoroughly and works

properly (recheck the specifications).

Mr. Dave Clausen 35

Step 5

Good Programming Habits
• 5. Interpretation

– The program may execute without any obvious

errors.

– It may not produce the results which solve the

problem.

• G.I.G.O Get what you ask for,

not what you want.

• Recheck your program with the original

specifications

Mr. Dave Clausen 36

Top Down Design

• Subdivide the problem into major tasks

– Subdivide each major task into smaller tasks

• Keep subdividing until each task is easily solved.

• Each subdivision is called stepwise

refinement.

• Each task is called a module

• We can use a structure chart to show

relationships between modules.

Mr. Dave Clausen 37

Top Down Design 2

Structure Chart

Sub task Sub task Sub task

Main Task

Mr. Dave Clausen 38

Top Down Design 3

• Pseudocode

– is written in English with programming

language like sentence structure and

indentations.

– Major Tasks are numbered with whole numbers

– Subtasks use decimal points for outline.

Mr. Dave Clausen 39

Top Down Design 4

Mr. Dave Clausen 40

Writing Programs

• Vocabulary

– reserved words

• have a predefined meaning that can’t be changed

– library identifiers

• words defined in standard libraries

– programmer supplied identifiers

• defined by the programmer following a well defined

set of rules

Mr. Dave Clausen 41

Writing Programs 2

• Words are CaSe SeNsItIvE

– For constants use ALL CAPS (UPPERCASE)

– For reserved words and identifiers use

lowercase

• Syntax

– rules for construction of valid statements,

including

• order of words

• punctuation

Mr. Dave Clausen 42

Writing Code

• Executable Statement

– basic unit of grammar

• library identifiers, programmer defined identifiers,

reserved words, numbers and/or characters

– A semicolon terminates a statement in many

programming languages

• Programs should be readable

noformat.cpp format.cpp

noformat.cpp
format.cpp

Mr. Dave Clausen 43

The Use of Comments

• Comments should be included to help make

the program more clear to someone reading

the code other than the author.

• Use comments after the header to explain

the function of the program, & throughout

the program

Mr. Dave Clausen 44

Test Programs

• Test programs are short programs written to

provide an answer to a specific question.

• You can try something out

• Practice the programming language

• Ask “what if” questions

• Experiment: try and see

