Structured Programming

Mr. Dave Clausen
La Canada High School
http://www.lcusd.net/Ichs/dclausen/




I. What 1s programming?

¢ A computer can only carry out a small
number of instructions or simple
calculations. A computer can only solve the
problem 1f it 1s broken down into smaller
steps.

5/2/2011 http://mww Icusd. net/lchs/dclausen Z



II. What 1s Structured
programming?

¢ An attempt to formalize the logic and
structure of programs. (i.e.)

Procedure Bubble_Sort (Var Original, Duplicate,
Sorted : ListType);
{Pre: The array is filled with ramdom numbers.
Post. The numbers will be sorted.}
Var
Element,
Index : Integer;
Begin
WiteLn ('Sorting...";
For Element := 1 to MaxEntries do
For Index := MaxEntries downto (Element+1) do
If Original[Index] < Original[lndex-1]
Then Swap (Original[Index], Original[lndex-1]);
Create_Sorted(Original, Sorted),
Recreate Original(Original, Duplicate),
Pause
End; {Bubble}

5/2/2011 http://mww Icusd. net/lchs/dclausen



III. What 1s the Purpose of
Structured Programming?

¢ To make computer programs
— Easier to read
— Easier to debug

— Easier to understand

— Easier to maintain

¢ To allow programmers to work as a team

5/2/2011 http://mww Icusd. net/lchs/dclausen 4



Purpose 2

ij

¢ To increase programming productivity

¢ To reduce testing time

¢ To increase clarity by reducing the
programs’ complexity

¢ To decrease maintenance and effort

5/2/2011 http://mww Icusd. net/lchs/dclausen 5



IV. Why 1s this special
programming necessary?

¢ Programming in the 60's: "fiddling" with the
program until 1t worked. Spaghetti Code

¢ "Spaghetti Code" Spaghetti Code.txt

5 REM SPAGHETTI CODE
— [10 GOTO 40
20 PRINT “THIS IS AN EXAMPLE”

30 GOTO 70 ‘—‘
L [40 GOTO 20

50 PRINT “OF SPAGHETTI CODE”
60 GOTO 80

70 GOTO 50

80 END

5/2/2011 http://mww Icusd. net/lchs/dclausen 6



Avoid using GOTO statements

¢ Edger W. Dijkstra 1968

“The GOTO statement should be abolished from
all higher level programming languages...”

“...The GOTO statement is just too primitive; it
1s too much of an invitation to make a mess of
one’s program.”

¢ Mr. Clausen “If you use a GOTO statement
in your program, you will get a “0” zero.”

5/2/2011 http://mww Icusd. net/lchs/dclausen



Approaches to Programming

¢ Top Down Design
— like the main points of an outline
— divide the program into modules
¢ Bottom Up Approach
— experimenting with the program

— “let’s try this and see if it works (test programs)

5/2/2011 http://mww Icusd. net/lchs/dclausen 8



V. Define The Process of
Structured Programming

¢ A. Analysis

— Determine if the computer 1s the proper tool for
the problem

s ——

5/2/2011 http://mww Icusd. net/lchs/dclausen 9



Process 2
¢ B. Specification

— Define the problem in a clear and unambiguous
manner considering;: »
< 1. Input
< 2. Output
« 3. Processing
— a) Sort
— b) Calculate

— ¢) Search
— d) Store

5/2/2011 http://mww Icusd. net/lchs/dclausen 10



Process 3

¢ C. Algorithm Design

— Plan the solution as a series of separate steps
using:

« 1. Pseudo-code (English) —
« 2. Flowcharts
+ 3. Stepwise Refinement:

— Level O, Level 1, etc.
« Use function or procedure Stubs

— BASIC BASIC.txt Pascal

— C+ + C++.ixt Pascal.txt

g

5/2/2011 http://mww Icusd. net/lchs/dclausen 11



9/2/2011

Process 4

+4. Top Down Design
(modules/procedures/functions)
— each module performs 1 task
— each module has 1 entry & 1 exit
— Conditional statements should not exit the module
— You could have a module "call" another module
— Variables are local to each module
— Declare & Initialize all variables
— Variable names should be descriptive
— Use Value and/or Variable Parameters

http://mww Icusd. net/lchs/dclausen

12



Process 5

¢ D. Code the program

— Convert your Pseudo Code and/or Algorithms
into Level 0 Commands

— Use Stepwise Refinement to add detail to Level
1 Commands

— Keep Refining until all Procedures and
Functions are complete

— Use proper syntax

5/2/2011 http://mww Icusd. net/lchs/dclausen 13



Process 6
¢ E. Test the program
— 1. Desk check

_ 2. Run the program, using sample data

1.e. Celsius To Fahrenheit

(Celsius To Fahrenheit.txt

5/2/2011 http://mww Icusd. net/lchs/dclausen 14



Process 7
(Testing the Program)

— 3. Test Border, Edge or "Extreme" cases
Test Border, Edge or “Extreme” cases.txt

— 4. Debug the program (all paths)

-
-
"
— A 4

" " ;
TANT

L
Ll

|
[(

< Syntax errors

« Logical errors

« Run Time errors
< Compiler errors

5/2/2011 http://mww Icusd. net/lchs/dclausen 15



Debugging Research

“If the source of the problem 1s not immediately obvious,
leave the computer and go somewhere where you can
quietly look over a printed copy of the program. Studies
show that people who do all of their debugging away from
the computer actually get their programs to work 1n less
time and 1n the end produce better programs than those
who continue to work on the machine-more proof that
there 1s still no mechanical substitute for human thought.”*

Dale, Weams, Headington “Programming and Problem Solving with C++", Jones and
Bartlett Publishers, 1997, pp80-81

Basili, V.R., Selby, R W., “Comparing the Effectiveness of Software Testing
Strategies”, IEEE Trans. On Software Engincering, Vol. SE-13, No.12, pp 1278-1296,
Dec. 1987

5/2/2011 http://mww Icusd. net/lchs/dclausen 16



Process &8

¢ F. Interpretation

— Does it produce the results that "solves" the
problem?

¢ G. Documentation

— Comments within the program

5/2/2011 http://mww Icusd. net/lchs/dclausen 17



IV. Control Structures

¢ Corrado Bohm & Guiseppe Jacopini
— 1964 Structure Theorem

9/2/2011

proved that any program logic, regardless of the
complexity, can be expressed using the control
structures of sequencing, selection, and
iteration.

http://mww Icusd. net/lchs/dclausen 18



Control Structures 2

¢ A. Sequence

— Instructions executed in order 1st, 2nd, 3rd. etc.

¢ B. Selection

— (Branching, Conditionals)
— If, If else, If then, If then else
— Switch or Case statements

5/2/2011 http://mww Icusd. net/lchs/dclausen 19



Control Structures 3

¢ C. Iteration (Repetition)

— Indefinite Loops
<« while, while do

— (condition checked at beginning)

« do...while, Repeat Until
— (condition checked at the end of the loop)

— Definite Loops
« for, for do (FOR NEXT LOOP)

— (Recursion)

5/2/2011 http://mww Icusd. net/lchs/dclausen

20



BASIC Line Numbers

¢ An outline of line numbers can help add
structure to our program. The following list
1s a suggested format for a Structured
Program using Top Down Design.

Structured Proeram LLine Numbers

5/2/2011 http://mww Icusd. net/lchs/dclausen 21



Program Design
(APCS College Board)

¢ Program Design

— The goal in designing a program is to solve the
problem correctly, but also to design a program
that is understandable, can adapt to changing
circumstances, and has the potential to be
reused in whole or in part. The design process
needs to be based on a thorough understanding
of the problem to be solved.

5/2/2011 http://mww Icusd. net/lchs/dclausen 22



Program Design Process

¢ Problem Definition

- S
— I¢

pecification of the purpose and goals

entification of subtasks to be performed

— Ic

entification of the ADT’s (Abstract Data

Types) and operations needed to solve the
problem

9/2/2011

http://mww Icusd. net/lchs/dclausen

23



Program Design Process 2

¢ Program Design

— Identification of reusable components from
existing code.

— Subprogram decomposition
— Choice of data structures and algorithms

— Design of the user interface

5/2/2011 http://mww Icusd. net/lchs/dclausen

24



Program Implementation

¢ The goals of program implementation
parallel those of program design. Modules
of the program that fill common needs
should be built so that they can be reused
easily in other programs. Control and data
abstraction are important parts of program
implementation.

5/2/2011 http://mww Icusd. net/lchs/dclausen

28



Program Implementation 2

¢ Implementation Techniques
— Methodology

< Top Down Design (using stub procedures)
« Bottom Up Development

— Use of Abstraction
< Control Abstraction

« Data Abstraction
— abstract data types

— encapsulation and information hiding

5/2/2011 http://mww Icusd. net/lchs/dclausen

26



Program Implementation 3

¢ Programming Constructs
— Input and output

< Interactive
< Files

— Control
+ Sequential
< Conditional

— Iteration

— Recursion

5/2/2011 http://mww Icusd. net/lchs/dclausen

24



Program Analysis

¢ Program Analysis

— Analyze and test programs to determine
whether they correctly meet their specifications.

— Analyze programs to understand their time and
space requirements when applied to different
data sets.

5/2/2011 http://mww Icusd. net/lchs/dclausen 28



Program Analysis 2

¢ Testing
— Testing modules in 1solation

— Identify boundary cases and generate
appropriate test data

— Integration testing

5/2/2011 http://mww Icusd. net/lchs/dclausen

28



Program Analysis 3

¢ Debugging
— Categorizing errors
< syntax
< run-time
« logic
— Identitying and Correcting Errors

— Techniques using a debugger, adding extra
output statements, desk checking

5/2/2011 http://mww Icusd. net/lchs/dclausen

30



Program Analysis 4

¢ Understanding and Modifying Existing
Code

¢ Handling Errors
— Robust Behavior

¢ Reasoning About Programs
— Pre & Post Conditions

— Assertions

5/2/2011 http://mww Icusd. net/lchs/dclausen

3



Program Analysis 5

¢ Analysis of Algorithms
— Informal Comparisons of running times

— Exact Calculation of statement execution
counts (Big - O notation)

¢ Numerical Limits

— Limitations of finite representations (ie integer
bounds, imprecision of floating point
representations, & round off error)

5/2/2011 http://mww Icusd. net/lchs/dclausen 32



Standard Data Structures

¢ Standard Data Structures

— Data structures are the means by which the
information used by a program is represented
within the program. An important theme of the
development and application of data structures
is abstraction.

— Simple Data Types (int, double, char, bool)
— Records (Structs)

— Arrays (Vectors or Matrices)

5/2/2011 http://mww Icusd. net/lchs/dclausen 33



Standard Algorithms

¢ Standard algorithms can serve as examples
of good solutions to standard problems.
Programs implementing them can serve as
models of good program design. They
provide examples for analysis of program
efficiency. Many are intertwined with
standard data structures.

5/2/2011 http://mww Icusd. net/lchs/dclausen

34



Standard Algorithms 2

¢ Scarching
— Sequential (Linear)
— Binary
¢ Sorting
— Selection
— Bubble
— Insertion
— Merge sort
— Quick sort

5/2/2011 http://mww Icusd. net/lchs/dclausen

35



Standard Algorithms 3

¢ Operations
— Insertion
— Deletion

— Traversals

5/2/2011 http://mww Icusd. net/lchs/dclausen

36



	Structured_ProgrammingHnr_Page_01
	Structured_ProgrammingHnr_Page_02
	Structured_ProgrammingHnr_Page_03
	Structured_ProgrammingHnr_Page_04
	Structured_ProgrammingHnr_Page_05
	Structured_ProgrammingHnr_Page_06
	Structured_ProgrammingHnr_Page_07
	Structured_ProgrammingHnr_Page_08
	Structured_ProgrammingHnr_Page_09
	Structured_ProgrammingHnr_Page_10
	Structured_ProgrammingHnr_Page_11
	Structured_ProgrammingHnr_Page_12
	Structured_ProgrammingHnr_Page_13
	Structured_ProgrammingHnr_Page_14
	Structured_ProgrammingHnr_Page_15
	Structured_ProgrammingHnr_Page_16
	Structured_ProgrammingHnr_Page_17
	Structured_ProgrammingHnr_Page_18
	Structured_ProgrammingHnr_Page_19
	Structured_ProgrammingHnr_Page_20
	Structured_ProgrammingHnr_Page_21
	Structured_ProgrammingHnr_Page_22
	Structured_ProgrammingHnr_Page_23
	Structured_ProgrammingHnr_Page_24
	Structured_ProgrammingHnr_Page_25
	Structured_ProgrammingHnr_Page_26
	Structured_ProgrammingHnr_Page_27
	Structured_ProgrammingHnr_Page_28
	Structured_ProgrammingHnr_Page_29
	Structured_ProgrammingHnr_Page_30
	Structured_ProgrammingHnr_Page_31
	Structured_ProgrammingHnr_Page_32
	Structured_ProgrammingHnr_Page_33
	Structured_ProgrammingHnr_Page_34
	Structured_ProgrammingHnr_Page_35
	Structured_ProgrammingHnr_Page_36

