riting Your First C++
Programs

Mr. Dave Clausen
La Canada High School

Program Development
Top Down Design

Planning Is a critical issue
— Don’t type in code “off the top of your head”

Programming Takes Time

— Plan on writing several revisions
— Debugging your program
Programming requires precision

— One misplaced semi-colon will stop the
program

Mr. Dave Clausen 2

Exercise 1n Frustration

Plan well (using paper and pencil)
Start early

Be patient

Handle Frustration

Work Hard

Don’t let someone else do part of the
program for you. Understand the Concepts
Yourself!

Mr. Dave Clausen 3

Six Steps To

* Good Programming Habits #1

1. Analyze the Problem

— Formulate a clear and precise statement of what
IS to be done.

— Know w
— Know w
— Know w

nat data are available
nat may be assumed

nat output Is desired & the form it

should take
— Divide the problem into subproblems

Mr. Dave Clausen 4

Six Steps To
Good Programming Habits #2

2. Develop an Algorithm

— Algorithm:

a finite sequence of effective statements that when
applied to the problem, will solve it.

— Effective Statement:

a clear unambiguous Instruction that can be carried
out.

— Algorithms should have:

a specific beginning and ending that is reached in a
reasonable amount of time (Finite amount of time).

Mr. Dave Clausen 5

Six Steps To
> Good Programming Habits #3

3. Document the Program
— Programming Style

— Comments

— Descriptive Variable Names
— Pre & Post Conditions

— QOutput

Mr. Dave Clausen 6

‘ SiIx Steps To
: Good Programming Habits #4-5

4. Code the Program
— After algorithms are correct
— Desk check your program

5. Run the Program
— Syntax Errors (semi colon missing, etc.)
— Logic Errors (divide by zero, etc.)

Mr. Dave Clausen 7

Six Steps To
Good Programming Habits

6. Test the Results
— Does it produce the correct solution?
— Check results with paper and pencil.

— Does it work for all cases?
Border, Edge, Extreme Cases

— Revise the program If not correct.

Mr. Dave Clausen

Edit the
program

Steps in Coding

Compile the
program

Syntax errors

Mr. Dave Clausen

Run the
program

Run-time and
logic errors

@
O
>
O
(D)

S

—
(D)
—
4"
=

W -
o

)
D

e

_I

10

Mr. Dave Clausen

Top Down Design

~~ Subdivide the problem into major tasks
— Subdivide each major task into smaller tasks
Keep subdividing until each task is easily solved.

Each subdivision is called stepwise
refinement.

Each task Is called a module

We can use a structure chart to show
relationships between modules.

Mr. Dave Clausen 11

op Down Design

Structure Chart

Main Task
I

I
Sub task
I

I I
Sub task Sub task
I

Mr. Dave Clausen

12

Top Down Design

Pseudocode

— Is written in English with C++ like sentence
structure and indentations.

— Major Tasks are numbered with whole numbers
— Subtasks use decimal points for outline.

Mr. Dave Clausen 13

' The Checkbook Problem
Update checkbook
Get Perform Display
Information| |Computations Results

Mr. Dave Clausen

14

Second-Level Refinement

Update checkbook

Get Perform Display
Information| |Computations Results

Get Get Get
Starting Transaction | | Transaction
Balance Type Amount

Mr. Dave Clausen 15

Pseudocode

tet Information
(7et starting balance

2. et transaction type

w3t then
add to balance
Else
subtract from balance
Display the results
A 1. Display starting balance

5.2, Display transaction
a3.2. 1 Dhusplay transaction type

a2 2 Display transaction amount
2.3 Display ending balance

Checkbook.cpp

Mr. Dave Clausen 16

Writing Programs

" C++ Vocabulary
— reserved words

have a predefined meaning that can’t be changed
— library identifiers

words defined in standard C++ libraries

— programmer supplied identifiers

defined by the programmer following a well defined
set of rules

Mr. Dave Clausen 17

Writing Programs

Words are CaSe SeNsltlvE
— For constants use ALL CAPS (UPPERCASE)

— For reserved words and identifiers use
lowercase

Syntax

— rules for construction of valid statements,
Including
order of words
punctuation

Mr. Dave Clausen 18

Library ldentifiers

Predefined words whose
meanings could be changed.

Examples:

— lostream
cin cout
— lomanip
setprecision setw
— math
pow sin sqrt

Mr. Dave Clausen

19

|dentifiers

Must start with a letter of the alphabet or
underscore _ (we will not use
underscores to start identifiers)

length determined by compiler
— Turbo C++ Win 4.5 32 characters
— Borland C++ unlimited

— Codewarrior 255 characters

— alm for 8 to 15 characters

common use IS to name variables &
constants

Mr. Dave Clausen 20

Basic Program Components

Comments

Preprocessor Directives
Constant Declaration Section
Type Declaration Section
Function Declarations

Main Program Heading: int main()
— Declaration Section
— Statement Section

Mr. Dave Clausen 21

22

Mr. Dave Clausen

Reswords.doc
Reswords.cpp

=
S
S S
o
5 =
o)
LD
S S
& o
M U
v P
<

Writing Code in C++

Executable Statement

— basic unit of grammar

library identifiers, programmer defined identifiers, reserved
words, numbers and/or characters

— A semicolon almost always terminates a statement

usually not needed AFTER a right curly brace }
— Exception: declaring user defined types.

Programs should be readable
noformat.cpp format.cpp
noformat.txt format.txt

Mr. Dave Clausen 23

Simple Data Types

= Type int

— represent integers or whole numbers

— Some rules to follow:

Plus signs do not need to be written before the
number

Minus signs must be written when using negative #’s
Decimal points cannot be used

Commas cannot be used

Leading zeros should be avoided (octal or base 8 #’s)
limits.h Int_ max Int_min

Mr. Dave Clausen 24

Simple Data Types

" Type double
— used to represent real numbers

— many programmers use type float, the AP
Board likes the extra precision of double

— avolid leading zeros, trailing zeros are ignored

— limits.h, float.h
dbl_max, dbl _min, dbl dig

Mr. Dave Clausen 25

Simple Data Types

Type char

— used to represent character data
a single character which includes a space
See Appendix 4 In our text

— must be enclosed in single quotes eg. ‘d

— Escape sequences treated as single char
‘\n” newline
‘\’> apostrophe
‘> double quote
‘U tab

Mr. Dave Clausen

26

Simple Data Types

Strings
— used to represent textual information
— string constants must be enclosed in double
quotation marks eg. “Hello world!”
empty string “”
new line char or string “\n”

“the word \”’hello\”” (puts quotes around
“hello”)

— String variables use:

#include “apstring.cpp”
use quotes for user supplied libraries

Mr. Dave Clausen 27

Output

#include <iostream.h>

— cout pronounced see-out

— cout << ‘\n’;

— cout << endl,

— cout << “Hello world!”;

— cout << “Hello world!” << endl;

printadd.cpp
printadd.txt

Mr. Dave Clausen

28

f Formatting Integers
.~ #include <iomanip.h> (input/output
-~ manipulators)

. right justify output

— cout << setiosflags (10s::right);
specify field width

— cout << setw(10) << 100 (output:
*xxxxx%100, where * represents a space.)

specify decimal precision

— cout<<setiosflags (ios::fixed | 10s::showpoint |
10S::right)<< setprecision (2);

Mr. Dave Clausen 29

Setprecision

Precision Is set and will remain until the
programmer specifies a new precision
— The decimal uses one position

— Trailing zeros are printed the specified number
of places

— Leading plus signs are omitted

— Leading minus signs are printed and use 1
nosition

— Digits are rounded, not truncated.

Mr. Dave Clausen 30

Test Programs

Test programs are short programs written to
provide an answer to a specific question.

You can try something out
Play with C+ +

Ask “what If” questions
Experiment: try and see

Mr. Dave Clausen 31

	Writing Your First C++ Programs�
	Program Development�Top Down Design
	Exercise in Frustration
	Six Steps To �Good Programming Habits #1
	Six Steps To �Good Programming Habits #2
	Six Steps To �Good Programming Habits #3
	Six Steps To �Good Programming Habits #4-5
	Six Steps To �Good Programming Habits
	Top Down Design
	Top Down Design
	Top Down Design
	Pseudocode
	Writing Programs
	Writing Programs
	Library Identifiers
	Identifiers
	Basic Program Components
	A Sample Program�reserved words
	Writing Code in C++
	Simple Data Types
	Simple Data Types
	Simple Data Types
	Simple Data Types
	Output
	Formatting Integers
	Setprecision
	Test Programs

