
Writing Your First C++
Programs

Mr. Dave Clausen
La Cañada High School

Mr. Dave Clausen 2

Program Development
Top Down Design

Planning is a critical issue
– Don’t type in code “off the top of your head”

Programming Takes Time
– Plan on writing several revisions
– Debugging your program

Programming requires precision
– One misplaced semi-colon will stop the

program

Mr. Dave Clausen 3

Exercise in Frustration

Plan well (using paper and pencil)
Start early
Be patient
Handle Frustration
Work Hard
Don’t let someone else do part of the
program for you. Understand the Concepts
Yourself!

Mr. Dave Clausen 4

Six Steps To
Good Programming Habits #1
1. Analyze the Problem
– Formulate a clear and precise statement of what

is to be done.
– Know what data are available
– Know what may be assumed
– Know what output is desired & the form it

should take
– Divide the problem into subproblems

Mr. Dave Clausen 5

Six Steps To
Good Programming Habits #2
2. Develop an Algorithm
– Algorithm:

• a finite sequence of effective statements that when
applied to the problem, will solve it.

– Effective Statement:
• a clear unambiguous instruction that can be carried

out.

– Algorithms should have:
• a specific beginning and ending that is reached in a

reasonable amount of time (Finite amount of time).

Mr. Dave Clausen 6

Six Steps To
Good Programming Habits #3

3. Document the Program
– Programming Style
– Comments
– Descriptive Variable Names
– Pre & Post Conditions
– Output

Mr. Dave Clausen 7

Six Steps To
Good Programming Habits #4-5

4. Code the Program
– After algorithms are correct
– Desk check your program

5. Run the Program
– Syntax Errors (semi colon missing, etc.)
– Logic Errors (divide by zero, etc.)

Mr. Dave Clausen 8

Six Steps To
Good Programming Habits

6. Test the Results
– Does it produce the correct solution?
– Check results with paper and pencil.
– Does it work for all cases?

• Border, Edge, Extreme Cases

– Revise the program if not correct.

Mr. Dave Clausen 9

Steps in Coding

Edit the
program

Compile the
program

Run the
programSyntax errors

Run-time and
logic errors

Mr. Dave Clausen 10

The Software Lifecycle
Analysis

Verify

Design

Verify

Implementation

Test

Integration

Test

Maintenance

Mr. Dave Clausen 11

Top Down Design

Subdivide the problem into major tasks
– Subdivide each major task into smaller tasks

• Keep subdividing until each task is easily solved.

Each subdivision is called stepwise
refinement.
Each task is called a module
We can use a structure chart to show
relationships between modules.

Mr. Dave Clausen 12

Top Down Design

Structure Chart

Sub task Sub task Sub task

Main Task

Mr. Dave Clausen 13

Top Down Design

Pseudocode
– is written in English with C++ like sentence

structure and indentations.
– Major Tasks are numbered with whole numbers
– Subtasks use decimal points for outline.

Mr. Dave Clausen 14

Structure Chart for
The Checkbook Problem

Update checkbook

Get
Information

Perform
Computations

Display
Results

Mr. Dave Clausen 15

Second-Level Refinement

Update checkbook

Get
Information

Perform
Computations

Display
Results

Get
Starting
Balance

Get
Transaction

Type

Get
Transaction

Amount

Mr. Dave Clausen 16

Pseudocode

Checkbook.cpp

Mr. Dave Clausen 17

Writing Programs

C++ Vocabulary
– reserved words

• have a predefined meaning that can’t be changed

– library identifiers
• words defined in standard C++ libraries

– programmer supplied identifiers
• defined by the programmer following a well defined

set of rules

Mr. Dave Clausen 18

Writing Programs

Words are CaSe SeNsItIvE
– For constants use ALL CAPS (UPPERCASE)
– For reserved words and identifiers use

lowercase
Syntax
– rules for construction of valid statements,

including
• order of words
• punctuation

Mr. Dave Clausen 19

Library Identifiers

Predefined words whose
meanings could be changed.
Examples:
– iostream

• cin cout

– iomanip
• setprecision setw

– math
• pow sin sqrt

Mr. Dave Clausen 20

Identifiers
Must start with a letter of the alphabet or
underscore _ (we will not use
underscores to start identifiers)
length determined by compiler
– Turbo C++ Win 4.5 32 characters
– Borland C++ unlimited
– Codewarrior 255 characters
– aim for 8 to 15 characters

common use is to name variables &
constants

Mr. Dave Clausen 21

Basic Program Components

Comments
Preprocessor Directives
Constant Declaration Section
Type Declaration Section
Function Declarations
Main Program Heading: int main()
– Declaration Section
– Statement Section

Mr. Dave Clausen 22

A Sample Program
reserved words

Reswords.doc

Reswords.cpp

Mr. Dave Clausen 23

Writing Code in C++
Executable Statement
– basic unit of grammar

• library identifiers, programmer defined identifiers, reserved
words, numbers and/or characters

– A semicolon almost always terminates a statement
• usually not needed AFTER a right curly brace }

– Exception: declaring user defined types.

Programs should be readable
noformat.cpp format.cpp
noformat.txt format.txt

Mr. Dave Clausen 24

Simple Data Types
Type int
– represent integers or whole numbers
– Some rules to follow:

• Plus signs do not need to be written before the
number

• Minus signs must be written when using negative #’s
• Decimal points cannot be used
• Commas cannot be used
• Leading zeros should be avoided (octal or base 8 #’s)
• limits.h int_max int_min

Mr. Dave Clausen 25

Simple Data Types

Type double
– used to represent real numbers
– many programmers use type float, the AP

Board likes the extra precision of double
– avoid leading zeros, trailing zeros are ignored
– limits.h, float.h

• dbl_max, dbl_min, dbl_dig

Mr. Dave Clausen 26

Simple Data Types

Type char
– used to represent character data

• a single character which includes a space
• See Appendix 4 in our text

– must be enclosed in single quotes eg. ‘d’
– Escape sequences treated as single char

• ‘\n’ newline
• ‘\’’ apostrophe
• ‘\”’ double quote
• ‘\t’ tab

Mr. Dave Clausen 27

Simple Data Types
Strings
– used to represent textual information
– string constants must be enclosed in double

quotation marks eg. “Hello world!”
• empty string “”
• new line char or string “\n”
• “the word \”hello\”” (puts quotes around

“hello”)

– String variables use:
#include “apstring.cpp”

• use quotes for user supplied libraries

Mr. Dave Clausen 28

Output

#include <iostream.h>
– cout pronounced see-out
– cout << ‘\n’;
– cout << endl;
– cout << “Hello world!”;
– cout << “Hello world!” << endl;

printadd.cpp
printadd.txt

Mr. Dave Clausen 29

Formatting Integers
#include <iomanip.h> (input/output
manipulators)

right justify output
– cout << setiosflags (ios::right);

specify field width
– cout << setw(10) << 100 (output:

*******100, where * represents a space.)
specify decimal precision
– cout<<setiosflags (ios::fixed | ios::showpoint |

ios::right)<< setprecision (2);

Mr. Dave Clausen 30

Setprecision

Precision is set and will remain until the
programmer specifies a new precision
– The decimal uses one position
– Trailing zeros are printed the specified number

of places
– Leading plus signs are omitted
– Leading minus signs are printed and use 1

position
– Digits are rounded, not truncated.

Mr. Dave Clausen 31

Test Programs

Test programs are short programs written to
provide an answer to a specific question.
You can try something out
Play with C+ +
Ask “what if” questions
Experiment: try and see

	Writing Your First C++ Programs�
	Program Development�Top Down Design
	Exercise in Frustration
	Six Steps To �Good Programming Habits #1
	Six Steps To �Good Programming Habits #2
	Six Steps To �Good Programming Habits #3
	Six Steps To �Good Programming Habits #4-5
	Six Steps To �Good Programming Habits
	Top Down Design
	Top Down Design
	Top Down Design
	Pseudocode
	Writing Programs
	Writing Programs
	Library Identifiers
	Identifiers
	Basic Program Components
	A Sample Program�reserved words
	Writing Code in C++
	Simple Data Types
	Simple Data Types
	Simple Data Types
	Simple Data Types
	Output
	Formatting Integers
	Setprecision
	Test Programs

